Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Galectin-3 Inhibits Osteoblast Differentiation through Notch Signaling 1 2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates bone remodeling through Notch signaling, suggesting a novel bone metastasis therapeutic target.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in NOTCH1 cause aortic valve disease.

          Calcification of the aortic valve is the third leading cause of heart disease in adults. The incidence increases with age, and it is often associated with a bicuspid aortic valve present in 1-2% of the population. Despite the frequency, neither the mechanisms of valve calcification nor the developmental origin of a two, rather than three, leaflet aortic valve is known. Here, we show that mutations in the signalling and transcriptional regulator NOTCH1 cause a spectrum of developmental aortic valve anomalies and severe valve calcification in non-syndromic autosomal-dominant human pedigrees. Consistent with the valve calcification phenotype, Notch1 transcripts were most abundant in the developing aortic valve of mice, and Notch1 repressed the activity of Runx2, a central transcriptional regulator of osteoblast cell fate. The hairy-related family of transcriptional repressors (Hrt), which are activated by Notch1 signalling, physically interacted with Runx2 and repressed Runx2 transcriptional activity independent of histone deacetylase activity. These results suggest that NOTCH1 mutations cause an early developmental defect in the aortic valve and a later de-repression of calcium deposition that causes progressive aortic valve disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Establishment and characterization of a human prostatic carcinoma cell line (PC-3).

            The establishment, characterization, and tumorigenicity of a new epithelial cell line (PC-3) from a human prostatic adenocarcinoma metastatic to bone is reported. The cultured cells show anchorage-independent growth in both monolayers and in soft agar suspension and produce subcutaneous tumors in nude mice. Culture of the transplanted tumor yielded a human cell line with characteristics identical to those used initially to produce the tumor. PC-3 has a greatly reduced dependence upon serum for growth when compared to normal prostatic epithelial cells and does not respond to androgens, glucocorticoids, or epidermal or fibroblast gowth factors. Karyotypic analysis by quinacrine banding revealed the cells to be completely aneuploid with a modal chromosome number in the hypotriploid range. At least 10 distinctive marker chromosomes were identified. The overall karyotype as well as the marker chromosomes are distinct from those of the HeLa cell. Electron microscopic studies revealed many features common to neoplastic cells of epithelial origin including numerous microvilli, junctional complexes, abnormal nuclei and nucleoli, abnormal mitochondria, annulate lamellae, and lipoidal bodies. Overall, the functional and morphologic characteristics of PC-3 are those of a poorly-differentiated adenocarcinoma. These cells should be useful in investigating the biochemical changes in advanced prostatic cancer cells and in assessing their response to chemotherapeutic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation.

              Postnatal bone marrow houses mesenchymal progenitor cells that are osteoblast precursors. These cells have established therapeutic potential, but they are difficult to maintain and expand in vitro, presumably because little is known about the mechanisms controlling their fate decisions. To investigate the potential role of Notch signaling in osteoblastogenesis, we used conditional alleles to genetically remove components of the Notch signaling system during skeletal development. We found that disruption of Notch signaling in the limb skeletogenic mesenchyme markedly increased trabecular bone mass in adolescent mice. Notably, mesenchymal progenitors were undetectable in the bone marrow of mice with high bone mass. As a result, these mice developed severe osteopenia as they aged. Moreover, Notch signaling seemed to inhibit osteoblast differentiation through Hes or Hey proteins, which diminished Runx2 transcriptional activity via physical interaction. These results support a model wherein Notch signaling in bone marrow normally acts to maintain a pool of mesenchymal progenitors by suppressing osteoblast differentiation. Thus, mesenchymal progenitors may be expanded in vitro by activating the Notch pathway, whereas bone formation in vivo may be enhanced by transiently suppressing this pathway.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neoplasia
                Neoplasia
                Neoplasia (New York, N.Y.)
                Neoplasia Press
                1522-8002
                1476-5586
                20 November 2014
                November 2014
                20 November 2014
                : 16
                : 11
                : 939-949
                Affiliations
                [* ]Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
                []Department of Orthopedic Surgery, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
                Author notes
                [* ]Address all correspondence to: Avraham Raz, PhD, Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University, 110 E Warren Ave, Detroit, MI 48201. raza@ 123456karmanos.org
                Article
                S1476-5586(14)00140-7
                10.1016/j.neo.2014.09.005
                4240919
                25425968
                f6d44ea7-a9fc-41ab-a9dd-d8c3595ca7e2
                © 2014 Neoplasia Press, Inc. Published by Elsevier Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 17 July 2014
                : 4 September 2014
                : 16 September 2014
                Categories
                Article

                hfob, human fetal osteoblast,crd, carbohydrate recognition-binding domain,alp, alkaline phosphatase,pnpp, p-nitrophenol phosphate substrate,nicd, notch intracellular domain,β-gp, β-glycerophosphate,aa, ascorbic acid,1,25-(oh)2d3, 1α-25-dihydroxycholecalciferol

                Comments

                Comment on this article