37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Importance of Polar Interactions for Complexes Containing Intrinsically Disordered Proteins

      research-article
      , , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

          Author Summary

          Protein-protein interactions are essential to communication and signal integration in cells. For these processes to be precise, interactions between proteins have to be specific and well coordinated. In order to understand the specificity in protein interactions, researches have focused on interfaces between two or more folded proteins. It has been shown that specificity in interactions between folded proteins relies on shape complementarity, hydrogen bonding, and salt-bridge formation. However, many proteins lack a unique folded structure; the so-called intrinsically disordered proteins. These proteins fluctuate between different conformations in isolation but often adopt a single structure when interacting with partner proteins. As many intrinsically disordered proteins are involved in signaling and regulation, their interactions have to be highly specific. The finding that the interaction interfaces of intrinsically disordered proteins are enriched in hydrophobic residues has led to questions regarding the specificity of interactions mediated by this group of proteins. Here, we show that polar and charged residues play a larger role in interfaces that involve intrinsically disordered proteins compared to interfaces that involve only folded proteins. Our results suggest that polar interactions are key contributors to the specificity of interactions that involve intrinsically disordered proteins.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CHARMM-GUI: a web-based graphical user interface for CHARMM.

            CHARMM is an academic research program used widely for macromolecular mechanics and dynamics with versatile analysis and manipulation tools of atomic coordinates and dynamics trajectories. CHARMM-GUI, http://www.charmm-gui.org, has been developed to provide a web-based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM. The web environment provides an ideal platform to build and validate a molecular model system in an interactive fashion such that, if a problem is found through visual inspection, one can go back to the previous setup and regenerate the whole system again. In this article, we describe the currently available functional modules of CHARMM-GUI Input Generator that form a basis for the advanced simulation techniques. Future directions of the CHARMM-GUI development project are also discussed briefly together with other features in the CHARMM-GUI website, such as Archive and Movie Gallery. 2008 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

              Predictions of the secondary structure of T4 phage lysozyme, made by a number of investigators on the basis of the amino acid sequence, are compared with the structure of the protein determined experimentally by X-ray crystallography. Within the amino terminal half of the molecule the locations of helices predicted by a number of methods agree moderately well with the observed structure, however within the carboxyl half of the molecule the overall agreement is poor. For eleven different helix predictions, the coefficients giving the correlation between prediction and observation range from 0.14 to 0.42. The accuracy of the predictions for both beta-sheet regions and for turns are generally lower than for the helices, and in a number of instances the agreement between prediction and observation is no better than would be expected for a random selection of residues. The structural predictions for T4 phage lysozyme are much less successful than was the case for adenylate kinase (Schulz et al. (1974) Nature 250, 140-142). No one method of prediction is clearly superior to all others, and although empirical predictions based on larger numbers of known protein structure tend to be more accurate than those based on a limited sample, the improvement in accuracy is not dramatic, suggesting that the accuracy of current empirical predictive methods will not be substantially increased simply by the inclusion of more data from additional protein structure determinations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                August 2013
                August 2013
                22 August 2013
                : 9
                : 8
                : e1003192
                Affiliations
                [1]Centre for High-Throughput Biology, University of British Columbia, East Mall, Vancouver, Canada
                Tel Aviv University, Israel
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JG. Performed the experiments: ETCW DN. Analyzed the data: ETCW DN. Contributed reagents/materials/analysis tools: ETCW DN. Wrote the paper: ETCW JG.

                Article
                PCOMPBIOL-D-13-00071
                10.1371/journal.pcbi.1003192
                3749945
                23990768
                6bad051b-b282-4b61-8fa7-b237cb04b83c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 January 2013
                : 6 July 2013
                Page count
                Pages: 14
                Funding
                This work was supported by the National Science and Engineering Research Council of Canada (NSERC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Interactions
                Biophysics
                Protein Chemistry
                Computational Biology
                Macromolecular Structure Analysis
                Macromolecular Complex Analysis

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article