20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L -1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic process completely detoxified all the selected textile azo dyes, further efforts should be made to implement such methods for large scale dye wastewater treatment technologies.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.

          The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes from effluents is by physio-chemical means. Such methods are often very costly and although the dyes are removed, accumulation of concentrated sludge creates a disposal problem. There is a need to find alternative treatments that are effective in removing dyes from large volumes of effluents and are low in cost, such as biological or combination systems. This article reviews the current available technologies and suggests an effective, cheaper alternative for dye removal and decolourisation applicable on large scale.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microbial decolorization of textile-dyecontaining effluents: A review

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bacterial decolorization and degradation of azo dyes

                Bookmark

                Author and article information

                Journal
                EXCLI J
                EXCLI J
                EXCLI J
                EXCLI Journal
                Leibniz Research Centre for Working Environment and Human Factors
                1611-2156
                29 January 2015
                2015
                : 14
                : 158-174
                Affiliations
                [1 ]Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
                [2 ]Department of Environmental Engineering, Kyungpook National University, Daegu-702-701, Korea
                [3 ]Department of Biochemistry, Shivaji University, Kolhapur-416004, India
                Author notes
                *To whom correspondence should be addressed: Sanjay Govindwar, Department of Biochemistry, Shivaji University, Kolhapur-416004, India, Phone: +91-231-2609152; Fax: +91-231-2691533, E-mail: spg_biochem@ 123456unishivaji.ac.in
                Article
                2014-642 Doc158
                10.17179/excli2014-642
                4553892
                f74e840d-b4c3-418b-87f6-20becd39ee39
                Copyright © 2015 Lade et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence ( http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited.

                History
                : 22 October 2014
                : 02 December 2014
                Categories
                Original Article

                azo dyes,p. rettgeri strain hsl1,pseudomonas sp. suk1,bacterial consortium,decolorization,biodegradation,sequential microaerophilic/aerobic process,detoxification

                Comments

                Comment on this article