22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses

      , , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sea environments harbor a wide variety of life forms that have adapted to live in hard and sometimes extreme conditions. Among the marine living organisms, extremophiles represent a group of microorganisms that attract increasing interest in relation to their ability to produce an array of molecules that enable them to thrive in almost every marine environment. Extremophiles can be found in virtually every extreme environment on Earth, since they can tolerate very harsh environmental conditions in terms of temperature, pH, pressure, radiation, etc. Marine extremophiles are the focus of growing interest in relation to their ability to produce biotechnologically useful enzymes, the so-called extremozymes. Thanks to their resistance to temperature, pH, salt, and pollutants, marine extremozymes are promising biocatalysts for new and sustainable industrial processes, thus representing an opportunity for several biotechnological applications. Since the marine microbioma, i.e., the complex of microorganisms living in sea environments, is still largely unexplored finding new species is a central issue for green biotechnology. Here we described the main marine environments where extremophiles can be found, some existing or potential biotechnological applications of marine extremozymes for biofuels production and bioremediation, and some possible approaches for the search of new biotechnologically useful species from marine environments.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Life in extreme environments.

          Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrothermal vents and the origin of life.

            Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H(2)-CO(2) redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions - what is the origin of life?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Satellite measurements of sea surface temperature through clouds

              Measurements of sea surface temperature (SST) can be made by satellite microwave radiometry in all weather conditions except rain. Microwaves penetrate clouds with little attenuation, giving an uninterrupted view of the ocean surface. This is a distinct advantage over infrared measurements of SST, which are obstructed by clouds. Comparisons with ocean buoys show a root mean square difference of about 0.6 degrees C, which is partly due to the satellite-buoy spatial-temporal sampling mismatch and the difference between the ocean skin temperature and bulk temperature. Microwave SST retrievals provide insights in a number of areas, including tropical instability waves, marine boundary layer dynamics, and the prediction of hurricane intensity.
                Bookmark

                Author and article information

                Contributors
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                January 2019
                December 28 2018
                : 11
                : 1
                : 149
                Article
                10.3390/su11010149
                f7669908-c8a6-4e37-b3da-f133ecc1beb3
                © 2018

                https://creativecommons.org/licenses/by/4.0/

                History

                Biochemistry,Animal science & Zoology
                Biochemistry, Animal science & Zoology

                Comments

                Comment on this article