0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic airway diseases, such as wheezing and asthma, remain significant sources of morbidity and mortality in the pediatric population. This is especially true for preterm infants who are impacted both by immature pulmonary development as well as disproportionate exposure to perinatal insults that may increase the risk of developing airway disease. Chronic pediatric airway disease is characterized by alterations in airway structure (remodeling) and function (increased airway hyperresponsiveness), similar to adult asthma. One of the most common perinatal risk factors for development of airway disease is respiratory support in the form of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical practice currently seeks to minimize oxygen exposure to decrease the risk of bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels of oxygen may carry risk for development of chronic airway, rather than alveolar disease. In addition, stretch exposure due to mechanical ventilation or CPAP may also play a role in development of chronic airway disease. Here, we summarize the current knowledge of the impact of perinatal oxygen and mechanical respiratory support on the development of chronic pediatric lung disease, with particular focus on pediatric airway disease. We further highlight mechanisms that could be explored as potential targets for novel therapies in the pediatric population.

          Related collections

          Most cited references208

          • Record: found
          • Abstract: found
          • Article: not found

          Every Newborn: progress, priorities, and potential beyond survival.

          In this Series paper, we review trends since the 2005 Lancet Series on Neonatal Survival to inform acceleration of progress for newborn health post-2015. On the basis of multicountry analyses and multi-stakeholder consultations, we propose national targets for 2035 of no more than 10 stillbirths per 1000 total births, and no more than 10 neonatal deaths per 1000 livebirths, compatible with the under-5 mortality targets of no more than 20 per 1000 livebirths. We also give targets for 2030. Reduction of neonatal mortality has been slower than that for maternal and child (1-59 months) mortality, slowest in the highest burden countries, especially in Africa, and reduction is even slower for stillbirth rates. Birth is the time of highest risk, when more than 40% of maternal deaths (total about 290,000) and stillbirths or neonatal deaths (5·5 million) occur every year. These deaths happen rapidly, needing a rapid response by health-care workers. The 2·9 million annual neonatal deaths worldwide are attributable to three main causes: infections (0·6 million), intrapartum conditions (0·7 million), and preterm birth complications (1·0 million). Boys have a higher biological risk of neonatal death, but girls often have a higher social risk. Small size at birth--due to preterm birth or small-for-gestational-age (SGA), or both--is the biggest risk factor for more than 80% of neonatal deaths and increases risk of post-neonatal mortality, growth failure, and adult-onset non-communicable diseases. South Asia has the highest SGA rates and sub-Saharan Africa has the highest preterm birth rates. Babies who are term SGA low birthweight (10·4 million in these regions) are at risk of stunting and adult-onset metabolic conditions. 15 million preterm births, especially of those younger than 32 weeks' gestation, are at the highest risk of neonatal death, with ongoing post-neonatal mortality risk, and important risk of long-term neurodevelopmental impairment, stunting, and non-communicable conditions. 4 million neonates annually have other life-threatening or disabling conditions including intrapartum-related brain injury, severe bacterial infections, or pathological jaundice. Half of the world's newborn babies do not get a birth certificate, and most neonatal deaths and almost all stillbirths have no death certificate. To count deaths is crucial to change them. Failure to improve birth outcomes by 2035 will result in an estimated 116 million deaths, 99 million survivors with disability or lost development potential, and millions of adults at increased risk of non-communicable diseases after low birthweight. In the post-2015 era, improvements in child survival, development, and human capital depend on ensuring a healthy start for every newborn baby--the citizens and workforce of the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in Hypoxia-Inducible Factor Biology.

            Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early CPAP versus surfactant in extremely preterm infants.

              There are limited data to inform the choice between early treatment with continuous positive airway pressure (CPAP) and early surfactant treatment as the initial support for extremely-low-birth-weight infants. We performed a randomized, multicenter trial, with a 2-by-2 factorial design, involving infants who were born between 24 weeks 0 days and 27 weeks 6 days of gestation. Infants were randomly assigned to intubation and surfactant treatment (within 1 hour after birth) or to CPAP treatment initiated in the delivery room, with subsequent use of a protocol-driven limited ventilation strategy. Infants were also randomly assigned to one of two target ranges of oxygen saturation. The primary outcome was death or bronchopulmonary dysplasia as defined by the requirement for supplemental oxygen at 36 weeks (with an attempt at withdrawal of supplemental oxygen in neonates who were receiving less than 30% oxygen). A total of 1316 infants were enrolled in the study. The rates of the primary outcome did not differ significantly between the CPAP group and the surfactant group (47.8% and 51.0%, respectively; relative risk with CPAP, 0.95; 95% confidence interval [CI], 0.85 to 1.05) after adjustment for gestational age, center, and familial clustering. The results were similar when bronchopulmonary dysplasia was defined according to the need for any supplemental oxygen at 36 weeks (rates of primary outcome, 48.7% and 54.1%, respectively; relative risk with CPAP, 0.91; 95% CI, 0.83 to 1.01). Infants who received CPAP treatment, as compared with infants who received surfactant treatment, less frequently required intubation or postnatal corticosteroids for bronchopulmonary dysplasia (P<0.001), required fewer days of mechanical ventilation (P=0.03), and were more likely to be alive and free from the need for mechanical ventilation by day 7 (P=0.01). The rates of other adverse neonatal outcomes did not differ significantly between the two groups. The results of this study support consideration of CPAP as an alternative to intubation and surfactant in preterm infants. (ClinicalTrials.gov number, NCT00233324.) 2010 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                19 June 2023
                2023
                : 10
                : 1214108
                Affiliations
                [1] 1Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, MN, United States
                [2] 2Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, MN, United States
                Author notes

                Edited by: Sara Manti, University of Messina, Italy

                Reviewed by: Serafina Perrone, University of Parma, Italy; John Benjamin, Vanderbilt University Medical Center, United States

                *Correspondence: Elizabeth R. Vogel, vogel.elizabeth@ 123456mayo.edu
                Article
                10.3389/fmed.2023.1214108
                10315587
                f7b5987b-01d2-4b22-aa45-91fd1902b1ad
                Copyright © 2023 Zhang, Bartman, Prakash, Pabelick and Vogel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 April 2023
                : 01 June 2023
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 209, Pages: 13, Words: 13444
                Categories
                Medicine
                Review
                Custom metadata
                Pulmonary Medicine

                preterm birth,oxygen,cpap,mechanical ventilation,asthma,reactive airway disease (rad),bronchopulmonary dysplasia (bpd)

                Comments

                Comment on this article