23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Omega-3 polyunsaturated fatty acids (PUFAs) have well established anti-cancer properties. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are among this biologically active family of macromolecules for which various anti-cancer effects have been explained. These PUFAs have a high safety profile and can induce apoptosis and inhibit growth of cancer cells both in vitro and in vivo, following a partially selective manner. They also increase the efficacy of chemotherapeutic agents by increasing the sensitivity of different cell lines to specific anti-neoplastic drugs. Various mechanisms have been proposed for the anti-cancer effects of these omega-3 PUFAs; however, the exact mechanisms still remain unknown. While numerous studies have investigated the effects of DHA and EPA on solid tumors and the responsible mechanisms, there is no consensus regarding the effects and mechanisms of action of these two FAs in hematological malignancies. Here, we performed a systematic review of the beneficial effects of EPA and DHA on hematological cell lines as well as the findings of related in vivo studies and clinical trials. We summarize the key underlying mechanisms and the therapeutic potential of these PUFAs in the treatment of hematological cancers. Differential expression of apoptosis-regulating genes and Glutathione peroxidase 4 (Gp-x4), varying abilities of different cancerous and healthy cells to metabolize EPA into its more active metabolites and to uptake PUFAS are among the major factors that determine the sensitivity of cells to DHA and EPA. Considering the abundance of data on the safety of these FAs and their proven anti-cancer effects in hematological cell lines and the lack of related human studies, further research is warranted to find ways of exploiting the anticancer effects of DHA and EPA in clinical settings both in isolation and in combination with other therapeutic regimens.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition.

          Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5 (n-3)) inhibit T lymphocyte activation probably by displacing acylated signaling proteins from membrane lipid rafts. Under physiological conditions, saturated fatty acyl residues of such proteins partition into the cytoplasmic membrane lipid leaflet with high affinity for rafts that are enriched in saturated fatty acyl-containing lipids. However, the biochemical alteration causing displacement of acylated proteins from rafts in PUFA-treated T cells is still under debate but could principally be attributed to altered protein acylation or changes in raft lipid composition. We show that treatment of Jurkat T cells with polyunsaturated eicosapentaenoic acid (20:5 (n-3)) results in marked enrichment of PUFAs (20:5; 22:5) in lipids from isolated rafts. Moreover, PUFAs were significantly incorporated into phosphatidylethanolamine that predominantly resides in the cytoplasmic membrane lipid leaflet. Notably, palmitate-labeled Src family kinase Lck and the linker for activation of T cells (LAT) were both displaced from lipid rafts indicating that acylation by PUFAs is not required for protein displacement from rafts in PUFA-treated T cells. In conclusion, these data provide strong evidence that displacement of acylated proteins from rafts in PUFA-treated T cells is predominantly due to altered raft lipid composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts.

            In vitro evidence indicates that (n-3) polyunsaturated fatty acids (PUFA) suppress T-cell activation in part by displacing proteins from lipid rafts, specialized regions within the plasma membrane that play an important role in T-cell signal transduction. However, the ability of (n-3) PUFA to influence membrane microdomains in vivo has not been examined to date. Therefore, we compared the effect of dietary (n-3) PUFA on raft (liquid ordered) vs. soluble (liquid disordered) microdomain phospholipid composition in mouse T cells. Mice were fed diets containing either 5 g/100 g corn oil (control) or 4 g/100 g fish oil [contains (n-3) PUFA] + 1 g/100 g corn oil for 14 d. Splenic T-cell lipid rafts were isolated by density gradient centrifugation. Raft sphingomyelin content (mol/100 mol) was decreased (P < 0.05) in T cells isolated from (n-3) PUFA-fed mice. Dietary (n-3) PUFA were selectively incorporated into T-cell raft and soluble membrane phospholipids. Phosphatidylserine and glycerophosphoethanolamine, which are highly localized to the inner cytoplasmic leaflet, were enriched to a greater extent with unsaturated fatty acids compared with sphingomyelin, phosphatidylinositol and glycerophosphocholine. These data indicate for the first time that dietary (n-3) PUFA differentially modulate T-cell raft and soluble membrane phospholipid and fatty acyl composition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects.

              Epidemiological studies have linked fish oil consumption to a decreased incidence of cancer. The anticancer effects of fish oil are mostly attributed to its content of omega-3 fatty acids: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, DHA, because of its unique effect of altering membrane composition, is often regarded as the major omega-3 fatty acid involved in anticancer activity. Although use of DHA as an anticancer drug to prevent or treat human cancer in clinical settings has not yet been well established, recent studies suggest that DHA can be very effective as an adjuvant with other anticancer agents. In this article, we present studies that show the role of DHA in improving anticancer drug efficacy. Several in vitro and animal studies suggest that combining DHA with other anticancer agents often improves efficacy of anticancer drugs and also reduces therapy-associated side effects. Incorporation of DHA in cellular membranes improves drug uptake, whereas increased lipid peroxidation is another mechanism for DHA-mediated enhanced efficacy of anticancer drugs. In addition, several intracellular targets including cyclooxygenase-2, nuclear factor kappa B, peroxisome proliferator-activated receptor gamma, mitogen-activated protein kinase, AKT, and BCL-2/BAX are found to play an important role in DHA-mediated additive or synergistic interaction with anticancer drugs. The data suggest that DHA is a safe, natural compound that can greatly improve the anticancer properties of anticancer drugs. Use of DHA with anticancer treatments provides an avenue to therapeutic improvement that involves less risk or side effects for patients and reduced regulatory burden for implementation. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 February 2018
                5 February 2018
                : 9
                : 14
                : 11858-11875
                Affiliations
                1 Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
                2 Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
                3 Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
                4 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
                5 Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
                6 Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
                7 Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
                Author notes
                Correspondence to: Esmaeil Mortaz, e.mortaz@ 123456uu.nl
                Article
                24405
                10.18632/oncotarget.24405
                5837752
                f7bca3bf-bc09-4ec9-8f0f-6c426c6965fe
                Copyright: © 2018 Moloudizargari et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 August 2017
                : 21 January 2018
                Categories
                Review

                Oncology & Radiotherapy
                omega-3,eicosapentaenoic acid,docosahexaenoic acid,apoptosis,fish oil
                Oncology & Radiotherapy
                omega-3, eicosapentaenoic acid, docosahexaenoic acid, apoptosis, fish oil

                Comments

                Comment on this article