58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PD-1 Blockade and OX40 Triggering Synergistically Protects against Tumor Growth in a Murine Model of Ovarian Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The co-inhibitory receptor Programmed Death-1 (PD-1) curtails immune responses and prevent autoimmunity, however, tumors exploit this pathway to escape from immune destruction. The co-stimulatory receptor OX40 is upregulated on T cells following activation and increases their clonal expansion, survival and cytokine production when engaged. Although antagonistic anti-PD-1 or agonistic anti-OX40 antibodies can promote the rejection of several murine tumors, some poorly immunogenic tumors were refractory to this treatment. In the present study, we evaluated the antitumor effects and mechanisms of combinatorial PD-1 blockade and OX40 triggering in a murine ID8 ovarian cancer model. Although individual anti-PD-1 or OX40 mAb treatment was ineffective in tumor protection against 10-day established ID8 tumor, combined anti-PD-1/OX40 mAb treatment markedly inhibited tumor outgrowth with 60% of mice tumor free 90 days after tumor inoculation. Tumor protection was associated with a systemic immune response with memory and antigen specificity and required CD4 + cells and CD8 + T cells. The anti-PD-1/OX40 mAb treatment increased CD4 + and CD8 + cells and decreased immunosuppressive CD4 +FoxP3 + regulatory T (Treg) cells and CD11b +Gr-1 + myeloid suppressor cells (MDSC), giving rise to significantly higher ratios of both effector CD4 + and CD8 + cells to Treg and MDSC in peritoneal cavity; Quantitative RT-PCR data further demonstrated the induction of a local immunostimulatory milieu by anti-PD-1/OX40 mAb treatment. The splenic CD8 + T cells from combined mAb treated mice produced high levels of IFN-γ upon tumor antigen stimulation and exhibited antigen-specific cytolytic activity. To our knowledge, this is the first study testing the antitumor effects of combined anti-PD-1/OX40 mAb in a murine ovarian cancer model, and our results provide a rationale for clinical trials evaluating ovarian cancer immunotherapy using this combination of mAb.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.

          PD-1 is a receptor of the Ig superfamily that negatively regulates T cell antigen receptor signaling by interacting with the specific ligands (PD-L) and is suggested to play a role in the maintenance of self-tolerance. In the present study, we examined possible roles of the PD-1/PD-L system in tumor immunity. Transgenic expression of PD-L1, one of the PD-L, in P815 tumor cells rendered them less susceptible to the specific T cell antigen receptor-mediated lysis by cytotoxic T cells in vitro, and markedly enhanced their tumorigenesis and invasiveness in vivo in the syngeneic hosts as compared with the parental tumor cells that lacked endogenous PD-L. Both effects could be reversed by anti-PD-L1 Ab. Survey of murine tumor lines revealed that all of the myeloma cell lines examined naturally expressed PD-L1. Growth of the myeloma cells in normal syngeneic mice was inhibited significantly albeit transiently by the administration of anti-PD-L1 Ab in vivo and was suppressed completely in the syngeneic PD-1-deficient mice. These results suggest that the expression of PD-L1 can serve as a potent mechanism for potentially immunogenic tumors to escape from host immune responses and that blockade of interaction between PD-1 and PD-L may provide a promising strategy for specific tumor immunotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2004.

            Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival rates based on incidence data from the National Cancer Institute and mortality data from the National Center for Health Statistics. Incidence and mortality rates are age standardized to the 2000 US standard million population. A total of 1,368,030 new cancer cases and 563,700 deaths are expected in the United States in 2004. Incidence rates stabilized among men from 1995 through 2000 but continued to increase among females by 0.4% per year from 1987 through 2000. Mortality rates have decreased by 1.5% per year since 1992 among men, but have stabilized from 1998 through 2000 among women. Cancer death rates continued to decrease from the three major cancer sites in men (lung and bronchus, colon and rectum, and prostate) and from female breast and colorectal cancers in women. In analyses by race and ethnicity, African-American men and women have 40% and 20% higher death rates from all cancers combined compared with White men and women, respectively. Cancer incidence and mortality rates are lower in other racial and ethnic groups than in Whites and African Americans for all sites combined and for the four major cancer sites. However, these groups generally have higher rates for stomach, liver, and cervical cancers than do Whites. Furthermore, minority populations are more likely to be diagnosed with advanced stage disease than are Whites. Progress in reducing the burden from cancer can be accelerated by applying existing cancer control knowledge into practice among all segments of the population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a syngeneic mouse model for events related to ovarian cancer.

              Mouse ovarian surface epithelial cells (MOSEC) were obtained from virgin, mature mice by mild trypsinization and were repeatedly passaged in vitro. Early passage cells (<20 passages) exhibited a cobblestone morphology and contact inhibition of growth. After approximately 20 passages in vitro, cobblestone morphology and contact inhibition of growth was lost. Tumor forming potential was determined by s.c. and i.p. injection of early and late passage cells into athymic and syngeneic C57BL6 mice. Subcutaneous tumors formed in approximately 4 months and were present only at the injection site. Intraperitoneal injection of late passage MOSEC into athymic and syngeneic mice resulted in growth of tumor implants throughout the abdominal cavity, and production of hemorrhagic ascitic fluid. Early passage MOSEC did not form tumors in vivo. Histopathologic analysis of tumors revealed a highly malignant neoplasm containing both carcinomatous and sarcomatous components. Late passage MOSEC expressed cytokeratin and did not produce ovarian steroids in response to gonadotropin stimulation in vitro. Ten clonal lines were established from late passage MOSEC. Each clone formed multiple peritoneal tumors and ascitic fluid after i.p. injection into C57BL6 mice. Three cell lines examined cytogenetically were polyploid with near-tetraploid modal chromosome numbers. Common clonal chromosome gains and losses included +5, +15, +19 and -X, -3, -4. One cell line had a clonal translocation between chromosomes 15 and 18 and another had a small marker chromosome; common structural abnormalities were not observed. These data describe the development of a mouse model for the study of events related to ovarian cancer in humans. The ability of the MOSEC to form extensive tumors within the peritoneal cavity, similar to those seen in women with Stage III and IV cancer, and the ability of the MOSEC to produce tumors in mice with intact immune systems, makes this model unique for investigations of molecular and immune interactions in ovarian cancer development.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                27 February 2014
                : 9
                : 2
                : e89350
                Affiliations
                [1 ]Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, ShenYang, China
                [2 ]Department of Gynecology and Obstetrics, No. 306 Hospital of PLA, Beijing, China
                [3 ]Department of Gynecology and Obstetrics, The First Affiliated Hospital, China Medical University, Shen Yang, China
                Mie University Graduate School of Medicine, Japan
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZQG SLZ. Performed the experiments: ZQG XW DLC. Analyzed the data: ZQG ZJX SLZ. Contributed reagents/materials/analysis tools: ZJX. Wrote the paper: ZQG ML SLZ.

                Article
                PONE-D-13-47216
                10.1371/journal.pone.0089350
                3937343
                24586709
                f7cb2599-988b-45aa-a3ed-080c422cd9d4
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 November 2013
                : 20 January 2014
                Page count
                Pages: 10
                Funding
                This work was supported by the Free Researcher Project of Shengjing Hospital (No.200806). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Molecular genetics
                Medicine
                Clinical immunology
                Immunity
                Immune activation
                Immune suppression
                Clinical research design
                Animal models of disease
                Obstetrics and gynecology
                Gynecologic cancers
                Oncology
                Cancer treatment
                Immunotherapy
                Cancers and neoplasms
                Gynecological tumors
                Ovarian cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article