27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macrophage in chronic kidney disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic kidney disease (CKD) has become a major health problem worldwide. This review describes the role of macrophages in CKD and highlights the importance of anti-inflammatory M2 macrophage activation in both renal fibrosis and wound healing processes. Furthermore, the mechanisms by which M2 macrophages induce renal repair and regeneration are still under debate and currently demand more attention. The M1/M2 macrophage balance is related to the renal microenvironment and could influence CKD progression. In fact, an inflammatory renal environment and M2 plasticity can be the major hurdles to establishing macrophage cell-based therapies in CKD. M2 macrophage cell-based therapy is promising if the M2 phenotype remains stable and is ‘fixed’ by in vitro manipulation. However, a greater understanding of phenotype polarization is still required. Moreover, better strategies and targets to induce reparative macrophages in vivo should guide future investigations in order to abate kidney diseases.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Development of monocytes, macrophages, and dendritic cells.

          Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Transforming growth factor beta in tissue fibrosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage polarization in bacterial infections.

              Converging studies have shown that M1 and M2 macrophages are functionally polarized in response to microorganisms and host mediators. Gene expression profiling of macrophages reveals that various Gram-negative and Gram-positive bacteria induce the transcriptional activity of a "common host response," which includes genes belonging to the M1 program. However, excessive or prolonged M1 polarization can lead to tissue injury and contribute to pathogenesis. The so-called M2 macrophages play a critical role in the resolution of inflammation by producing anti-inflammatory mediators. These M2 cells cover a continuum of cells with different phenotypic and functional properties. In addition, some bacterial pathogens induce specific M2 programs in macrophages. In this review, we discuss the relevance of macrophage polarization in three domains of infectious diseases: resistance to infection, infectious pathogenesis, and chronic evolution of infectious diseases.
                Bookmark

                Author and article information

                Journal
                Clin Kidney J
                Clin Kidney J
                ckj
                ndtplus
                Clinical Kidney Journal
                Oxford University Press
                2048-8505
                2048-8513
                December 2016
                05 October 2016
                05 October 2016
                : 9
                : 6
                : 765-771
                Affiliations
                [1 ]Experimental Nephrology, Departament de Ciències Clíniques, Universitat de Barcelona, Institut d'Investigació biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
                [2 ]Nephrology Department, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
                Author notes
                Correspondence and offprint requests to: Roser Guiteras; E-mail: rguiteras@ 123456idibell.cat
                Article
                sfw096
                10.1093/ckj/sfw096
                5162417
                27994852
                f7de426d-0583-4bee-aa23-07ce4a015d8b
                © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 19 May 2016
                : 22 August 2016
                Page count
                Pages: 7
                Categories
                Translational Nephrology

                Nephrology
                alternatively activated macrophages,end-stage renal failure,phenotype polarization,therapeutic strategy

                Comments

                Comment on this article