16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy and safety of artemisinin-based combination therapies for the treatment of uncomplicated malaria in pediatrics: a systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Malaria is a major cause of morbidity and mortality in pediatrics in malaria endemic areas. Artemisinin-based combination therapies (ACTs) are the drugs of choice for malaria management particularly across malaria-endemic countries. This systematic review and meta-analysis was performed to assess efficacy and safety of ACTs for uncomplicated malaria in pediatric populations.

          Methods

          A body of evidence was searched for published ACT trials until March 06, 2020. The search was focused on efficacy and safety studies of ACTs for uncomplicated malaria in pediatrics. PubMed library was searched using best adapted search terms after multiple trials. References were exported to the endnote library and then to Covidence for screening. Data was extracted using the Covidence platform. The per-protocol analysis report for the efficacy and the intention-to-treat analysis for the safety were synthesized. Met-analysis was carried using Open Meta-Analyst software. Random effects model was applied and the heterogeneity of studies was evaluated using I 2 statistic.

          Results

          Nineteen studies were included in the final analysis. Overall, crude, PCR-corrected P. falciparum malaria treatment success rate was 96.3 and 93.9% for day 28 and 42, respectively. In the subgroup analysis, PCR-corrected adequate clinical and parasitological response (ACPR) of dihydroartemisinin-piperaquine (DP) was 99.6% (95% CI: 99.1 to 100%, I 2 = 0%; 4 studies) at day 28 and 99.6% (95% CI of 99 to 100%, I 2 = 0%; 3 studies) at day 42. Nine studies reported ACT related adverse drug reactions (ADR) (8.3%, 356/4304). The reported drug related adverse reactions ranged from 1.8% in DP (two studies) to 23.3% in artesunate-pyronaridine (AP). Gastrointestinal symptoms were the most common ACT related adverse effects, and all ADRs were reported to resolve spontaneously.

          Conclusion

          ACTs demonstrated a high crude efficacy and tolerability against P. falciparum. The high treatment success and tolerability with low heterogeneity conferred by DP has implication for policy makers who plan the use of ACTs for uncomplicated falciparum malaria treatment in pediatrics.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12879-021-06018-6.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015

          Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015 and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial.

            Artemisinin-based combination therapy (ACT) reduces the potential for malaria transmission, compared with non-ACTs. It is unclear whether this effect differs between ACTs. A total of 298 children (age, 6 months to 10 years) with uncomplicated falciparum malaria were randomized to artemether-lumefantrine (AL; n = 153) or dihydroartemisinin-piperaquine (DP; n = 145) in Mbita, a community in western Kenya. Gametocyte carriage was determined by molecular methods on days 0, 1, 2, 3, 7, 14, 28, and 42 after treatment initiation. The gametocyte infectiousness to mosquitoes was determined by mosquito-feeding assays on day 7 after beginning therapy. The cumulative risk of recurrent parasitemia on day 42 after initiation of treatment, unadjusted by polymerase chain reaction findings, was 20.7% (95% confidence interval [CI], 14.4-28.2) for AL, compared with 3.7% (95% CI, 1.2-8.5) for DP (P < .001). The mean duration of gametocyte carriage was 5.5 days (95% CI, 3.6-8.5) for AL and 15.3 days (95% CI, 9.7-24.2) for DP (P = .001). The proportion of mosquitoes that became infected after feeding on blood from AL-treated children was 1.88% (43 of 2293), compared with 3.50% (83 of 2371) for those that fed on blood from DP-treated children (P = .06); the oocyst burden among mosquitoes was lower among those that fed on blood from AL-treated children (P = .005) CONCLUSIONS: While DP was associated with a longer prophylactic time after treatment, gametocyte carriage and malaria transmission to mosquitoes was lower after AL treatment. NCT00868465.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artemisinin-based combination therapy for treating uncomplicated malaria.

              The World Health Organization recommends uncomplicated P. falciparum malaria is treated using Artemisinin-based Combination Therapy (ACT). This review aims to assist the decision making of malaria control programmes by providing an overview of the relative benefits and harms of the available options. To compare the effects of ACTs with other available ACT and non-ACT combinations for treating uncomplicated P. falciparum malaria. We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) to March 2009. Randomized head to head trials of ACTs in uncomplicated P. falciparum malaria.This review is limited to: dihydroartemisinin-piperaquine; artesunate plus mefloquine; artemether-lumefantrine (six doses); artesunate plus amodiaquine; artesunate plus sulfadoxine-pyrimethamine and amodiaquine plus sulfadoxine-pyrimethamine. Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on P. vivax, gametocytes, haemoglobin, and adverse events. Fifty studies met the inclusion criteria. All five ACTs achieved PCR adjusted failure rates of < 10%, in line with WHO recommendations, at most study sites.Dihydroartemisinin-piperaquine performed well compared to the ACTs in current use (PCR adjusted treatment failure versus artesunate plus mefloquine in Asia; RR 0.39, 95% CI 0.19 to 0.79; three trials, 1062 participants; versus artemether-lumefantrine in Africa; RR 0.39, 95% CI 0.24 to 0.64; three trials, 1136 participants).ACTs were superior to amodiaquine plus sulfadoxine-pyrimethamine in East Africa (PCR adjusted treatment failure versus artemether-lumefantrine; RR 0.12, 95% CI 0.06 to 0.24; two trials, 618 participants; versus AS+AQ; RR 0.44, 95% CI 0.22 to 0.89; three trials, 1515 participants).Dihydroartemisinin-piperaquine (RR 0.32, 95% CI 0.24 to 0.43; four trials, 1442 participants) and artesunate plus mefloquine (RR 0.30, 95% CI 0.21 to 0.41; four trials, 1003 participants) were more effective than artemether-lumefantrine at reducing the incidence of P.vivax over 42 days follow up. Dihydroartemisinin-piperaquine is another effective first-line treatment for P. falciparum malaria.The performance of the non-ACT (amodiaquine plus sulfadoxine-pyrimethamine) falls below WHO recommendations for first-line therapy in parts of Africa.In areas where primaquine is not being used for radical cure of P. vivax, ACTs with long half-lives may provide some benefit.
                Bookmark

                Author and article information

                Contributors
                workineh.shibeshi@aau.edu.et
                Journal
                BMC Infect Dis
                BMC Infect Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                7 April 2021
                7 April 2021
                2021
                : 21
                : 326
                Affiliations
                GRID grid.7123.7, ISNI 0000 0001 1250 5688, Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, , Addis Ababa University, ; Addis Ababa, Ethiopia
                Article
                6018
                10.1186/s12879-021-06018-6
                8028735
                33827422
                f800737b-cd60-4c2b-9737-7b0d3ec5d4cb
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 20 August 2020
                : 26 March 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001713, European and Developing Countries Clinical Trials Partnership;
                Award ID: TMA2016-1778
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2021

                Infectious disease & Microbiology
                efficacy,safety,artemisinin-based combination,systematic review,meta-analysis

                Comments

                Comment on this article