0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DeepCov19Net: Automated COVID-19 Disease Detection with a Robust and Effective Technique Deep Learning Approach

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The new type of coronavirus disease, which has spread from Wuhan, China since the beginning of 2020 called COVID-19, has caused many deaths and cases in most countries and has reached a global pandemic scale. In addition to test kits, imaging techniques with X-rays used in lung patients have been frequently used in the detection of COVID-19 cases. In the proposed method, a novel approach based on a deep learning model named DeepCovNet was utilized to classify chest X-ray images containing COVID-19, normal (healthy), and pneumonia classes. The convolutional-autoencoder model, which had convolutional layers in encoder and decoder blocks, was trained by using the processed chest X-ray images from scratch for deep feature extraction. The distinctive features were selected with a novel and robust algorithm named SDAR from the deep feature set. In the classification stage, an SVM classifier with various kernel functions was used to evaluate the classification performance of the proposed method. Also, hyperparameters of the SVM classifier were optimized with the Bayesian algorithm for increasing classification accuracy. Specificity, sensitivity, precision, and F-score, were also used as performance metrics in addition to accuracy which was used as the main criterion. The proposed method with an accuracy of 99.75 outperformed the other approaches based on deep learning.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

          Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing

            Some patients with positive chest CT findings may present with negative results of real time reverse-transcription–polymerase chain- reaction (RT-PCR) for 2019 novel coronavirus (2019-nCoV). In this report, we present chest CT findings from five patients with 2019-nCoV infection who had initial negative RT-PCR results. All five patients had typical imaging findings, including ground-glass opacity (GGO) (5 patients) and/or mixed GGO and mixed consolidation (2 patients). After isolation for presumed 2019-nCoV pneumonia, all patients were eventually confirmed with 2019-nCoV infection by repeated swab tests. A combination of repeated swab tests and CT scanning may be helpful when for individuals with high clinical suspicion of nCoV infection but negative RT-PCR screening
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automated detection of COVID-19 cases using deep neural networks with X-ray images

              The novel coronavirus 2019 (COVID-2019), which first appeared in Wuhan city of China in December 2019, spread rapidly around the world and became a pandemic. It has caused a devastating effect on both daily lives, public health, and the global economy. It is critical to detect the positive cases as early as possible so as to prevent the further spread of this epidemic and to quickly treat affected patients. The need for auxiliary diagnostic tools has increased as there are no accurate automated toolkits available. Recent findings obtained using radiology imaging techniques suggest that such images contain salient information about the COVID-19 virus. Application of advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease, and can also be assistive to overcome the problem of a lack of specialized physicians in remote villages. In this study, a new model for automatic COVID-19 detection using raw chest X-ray images is presented. The proposed model is developed to provide accurate diagnostics for binary classification (COVID vs. No-Findings) and multi-class classification (COVID vs. No-Findings vs. Pneumonia). Our model produced a classification accuracy of 98.08% for binary classes and 87.02% for multi-class cases. The DarkNet model was used in our study as a classifier for the you only look once (YOLO) real time object detection system. We implemented 17 convolutional layers and introduced different filtering on each layer. Our model (available at (https://github.com/muhammedtalo/COVID-19)) can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.
                Bookmark

                Author and article information

                Contributors
                fatihdemir@firat.edu.tr
                Journal
                New Gener Comput
                New Gener Comput
                New Generation Computing
                Ohmsha (Tokyo )
                0288-3635
                1882-7055
                12 January 2022
                : 1-23
                Affiliations
                [1 ]GRID grid.411320.5, ISNI 0000 0004 0574 1529, Biomedical Department, Vocational School of Technical Sciences, , Firat University, ; Elazig, Turkey
                [2 ]GRID grid.411320.5, ISNI 0000 0004 0574 1529, Mechatronics Engineering Department, Technology Faculty, , Firat University, ; Elazig, Turkey
                [3 ]GRID grid.411320.5, ISNI 0000 0004 0574 1529, Electrical-Electronics Engineering Department, Technology Faculty, , Firat University, ; Elazig, Turkey
                Author information
                http://orcid.org/0000-0003-3210-3664
                Article
                152
                10.1007/s00354-021-00152-0
                8753945
                f8428ab3-e79b-4f77-a3a6-45fa8e0c5928
                © Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 15 October 2021
                : 26 December 2021
                Categories
                Article

                covid-19,convolutional-autoencoder model,feature selection,bayesian algorithm

                Comments

                Comment on this article