12
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regional and temporal differences in the relation between SARS-CoV-2 biomarkers in wastewater and estimated infection prevalence – Insights from long-term surveillance

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wastewater-based epidemiology provides a conceptual framework for the evaluation of the prevalence of public health related biomarkers. In the context of the Coronavirus disease-2019, wastewater monitoring emerged as a complementary tool for epidemic management. In this study, we evaluated data from six wastewater treatment plants in the region of Saxony, Germany. The study period lasted from February to December 2021 and covered the third and fourth regional epidemic waves. We collected 1065 daily composite samples and analyzed SARS-CoV-2 RNA concentrations using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Regression models quantify the relation between RNA concentrations and disease prevalence. We demonstrated that the relation is site and time specific. Median loads per diagnosed case differed by a factor of 3–4 among sites during both waves and were on average 45 % higher during the third wave. In most cases, log-log-transformed data achieved better regression performance than non-transformed data and local calibration outperformed global models for all sites. The inclusion of lag/lead time, discharge and detection probability improved model performance in all cases significantly, but the importance of these components was also site and time specific. In all cases, models with lag/lead time and log-log-transformed data obtained satisfactory goodness-of-fit with adjusted coefficients of determination higher than 0.5. Back-estimation of testing efficiency from wastewater data confirmed state-wide prevalence estimation from individual testing statistics, but revealed pronounced differences throughout the epidemic waves and among the different sites.

          Graphical abstract

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

          Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virological assessment of hospitalized patients with COVID-2019

            Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stability of SARS-CoV-2 in different environmental conditions

              We previously reported the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different clinical samples. 1 This virus can be detected on different surfaces in a contaminated site. 2 Here, we report the stability of SARS-CoV-2 in different environmental conditions. We first measured the stability of SARS-CoV-2 at different temperatures. SARS-CoV-2 in virus transport medium (final concentration ∼6·8 log unit of 50% tissue culture infectious dose [TCID50] per mL) was incubated for up to 14 days and then tested for its infectivity (appendix p 1). The virus is highly stable at 4°C, but sensitive to heat. At 4°C, there was only around a 0·7 log-unit reduction of infectious titre on day 14. With the incubation temperature increased to 70°C, the time for virus inactivation was reduced to 5 mins. We further investigated the stability of this virus on different surfaces. Briefly, a 5 μL droplet of virus culture (∼7·8 log unit of TCID50 per mL) was pipetted on a surface (appendix p 1; ∼cm2 per piece) and left at room temperature (22°C) with a relative humidity of around 65%. The inoculated objects retrieved at desired time-points were immediately soaked with 200 μL of virus transport medium for 30 mins to elute the virus. Therefore, this recovery of virus does not necessarily reflect the potential to pick up the virus from casual contact. No infectious virus could be recovered from printing and tissue papers after a 3-hour incubation, whereas no infectious virus could be detected from treated wood and cloth on day 2. By contrast, SARS-CoV-2 was more stable on smooth surfaces. No infectious virus could be detected from treated smooth surfaces on day 4 (glass and banknote) or day 7 (stainless steel and plastic). Strikingly, a detectable level of infectious virus could still be present on the outer layer of a surgical mask on day 7 (∼0·1% of the original inoculum). Interestingly, a biphasic decay of infectious SARS-CoV-2 could be found in samples recovered from these smooth surfaces (appendix pp 2–7). 39 representative non-infectious samples tested positive by RT-PCR 3 (data not shown), showing that non-infectious viruses could still be recovered by the eluents. We also tested the virucidal effects of disinfectants by adding 15 μL of SARS-CoV-2 culture (∼7·8 log unit of TCID50 per mL) to 135 μL of various disinfectants at working concentration (appendix p 1). With the exception of a 5-min incubation with hand soap, no infectious virus could be detected after a 5-min incubation at room temperature (22°C). Additionally, we also found that SARS-CoV-2 is extremely stable in a wide range of pH values at room temperature (pH 3–10; appendix p 1). Overall, SARS-CoV-2 can be highly stable in a favourable environment, 4 but it is also susceptible to standard disinfection methods.
                Bookmark

                Author and article information

                Journal
                Sci Total Environ
                Sci Total Environ
                The Science of the Total Environment
                The Authors. Published by Elsevier B.V.
                0048-9697
                1879-1026
                12 October 2022
                20 January 2023
                12 October 2022
                : 857
                : 159358
                Affiliations
                [a ]Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
                [b ]Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
                [c ]Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
                [d ]Institute of Hydrobiology, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
                [e ]University Heidelberg, Institute of Medical Microbiology and Hygiene, Heidelberg, Germany
                [f ]Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
                Author notes
                [* ]Corresponding author.
                [1]

                Both authors contributed equally.

                Article
                S0048-9697(22)06457-9 159358
                10.1016/j.scitotenv.2022.159358
                9554318
                36240928
                f8686ec9-792f-4b5d-876a-d3a80e9c56ca
                © 2022 The Authors

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 23 July 2022
                : 6 October 2022
                : 7 October 2022
                Categories
                Article

                General environmental science
                wastewater-based epidemiology,sars-cov-2,regression modelling,model selection,prevalence estimation,testing efficiency

                Comments

                Comment on this article