1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, Kumar et al. investigated the mechanism by which mRNA enters the mRNA-binding channel of the 40S ribosomal subunit. Using an in vitro reconstituted translation system that recapitulates initiation on capped mRNAs, their results support a model in which eIF4E–eIF4G–eIF3–40S interactions place eIF4E at the leading edge of the 40S subunit, and mRNA is threaded into the mRNA-binding channel such that Met-tRNA i Met can inspect it from the first nucleotide.

          Abstract

          Ribosomal attachment to mammalian capped mRNAs is achieved through the cap–eukaryotic initiation factor 4E (eIF4E)–eIF4G–eIF3–40S chain of interactions, but the mechanism by which mRNA enters the mRNA-binding channel of the 40S subunit remains unknown. To investigate this process, we recapitulated initiation on capped mRNAs in vitro using a reconstituted translation system. Formation of initiation complexes at 5′-terminal AUGs was stimulated by the eIF4E–cap interaction and followed “the first AUG” rule, indicating that it did not occur by backward scanning. Initiation complexes formed even at the very 5′ end of mRNA, implying that Met-tRNA i Met inspects mRNA from the first nucleotide and that initiation does not have a “blind spot.” In assembled initiation complexes, the cap was no longer associated with eIF4E. Omission of eIF4A or disruption of eIF4E–eIF4G–eIF3 interactions converted eIF4E into a specific inhibitor of initiation on capped mRNAs. Taken together, these results are consistent with the model in which eIF4E–eIF4G–eIF3–40S interactions place eIF4E at the leading edge of the 40S subunit, and mRNA is threaded into the mRNA-binding channel such that Met-tRNA i Met can inspect it from the first nucleotide. Before entering, eIF4E likely dissociates from the cap to overcome steric hindrance. We also found that the m 7G cap specifically interacts with eIF3l.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          A diverse array of gene products are effectors of the type I interferon antiviral response

          The type I interferon (IFN) response protects cells from invading viral pathogens. The cellular factors that mediate this defense are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery over 25 years ago 1,2,3 , only few have been characterized with respect to antiviral activity. For most, little is known about their antiviral potential, their target specificity, and their mechanisms of action. Using an overexpression screening approach, we show that different viruses are targeted by unique sets of ISGs, with each viral species susceptible to multiple antiviral genes with a range of inhibitory activities. To conduct the screen, over 380 ISGs were tested for their ability to inhibit the replication of several important viruses including hepatitis C virus (HCV), yellow fever virus (YFV), West Nile virus (WNV), chikungunya virus (CHIKV), Venezuelan equine encephalitis virus (VEEV), and human immunodeficiency virus (HIV-1). Broadly acting effectors included IRF1, C6orf150, HPSE, RIG-I, MDA5, and IFITM3, while more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT, OASL, RTP4, TREX1, and UNC84B. Combined expression of two-ISG pairs showed additive antiviral effects similar to moderate IFN doses. Mechanistic studies revealed a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E, and MCOLN2, enhanced replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic IFN system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanism of eukaryotic translation initiation and principles of its regulation.

            Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control of gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions in ribosomal initiation complexes, have advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studying the regulation of translation initiation by mechanisms that include the modulation of initiation factor activity (which affects almost all scanning-dependent initiation) and through sequence-specific RNA-binding proteins and microRNAs (which affect individual mRNAs).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A unifying model for mTORC1-mediated regulation of mRNA translation

              The mTOR Complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses 1 . mTORC1 regulates mRNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in cells acutely treated with the mTOR inhibitor Torin1, which, unlike rapamycin, fully inhibits mTORC1 2 . These data reveal a surprisingly simple view of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5′ terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5′ UTR length or complexity 3 . mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown 4 . Remarkably, loss of just the well-characterized mTORC1 substrates, the 4E-BP family of translational repressors, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 July 2016
                : 30
                : 13
                : 1573-1588
                Affiliations
                Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
                Author notes
                Article
                8711660
                10.1101/gad.282418.116
                4949329
                27401559
                f87ba5e4-239d-423a-850a-49ad0bd8578e
                © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 7 April 2016
                : 1 June 2016
                Page count
                Pages: 16
                Funding
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: GM59660
                Categories
                Research Paper

                eukaryotic translation initiation,eif4e,eif4f,m7g,eif3l,40s ribosomal subunit

                Comments

                Comment on this article