17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk assessment for the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) on aircraft: a systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Middle East respiratory syndrome coronavirus (MERS-CoV) causes a potentially fatal respiratory disease. Although it is most common in the Arabian Peninsula, it has been exported to 17 countries outside the Middle East, mostly through air travel. The Risk Assessment Guidelines for Infectious Diseases transmitted on Aircraft (RAGIDA) advise authorities on measures to take when an infected individual travelled by air. The aim of this systematic review was to gather all available information on documented MERS-CoV cases that had travelled by air, to update RAGIDA. The databases used were PubMed, Embase, Scopus and Global Index Medicus; Google was searched for grey literature and hand searching was performed on the EU Early Warning and Response System and the WHO Disease Outbreak News. Forty-seven records were identified, describing 21 cases of MERS that had travelled on 31 flights. Contact tracing was performed for 17 cases. Most countries traced passengers sitting in the same row and the two rows in front and behind the case. Only one country decided to trace all passengers and crew. No cases of in-flight transmission were observed; thus, considering the resources it requires, a conservative approach may be appropriate when contact tracing passengers and crew where a case of MERS has travelled by air.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study

            Summary Background In 2015, a large outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection occurred following a single patient exposure in an emergency room at the Samsung Medical Center, a tertiary-care hospital in Seoul, South Korea. We aimed to investigate the epidemiology of MERS-CoV outbreak in our hospital. Methods We identified all patients and health-care workers who had been in the emergency room with the index case between May 27 and May 29, 2015. Patients were categorised on the basis of their exposure in the emergency room: in the same zone as the index case (group A), in different zones except for overlap at the registration area or the radiology suite (group B), and in different zones (group C). We documented cases of MERS-CoV infection, confirmed by real-time PCR testing of sputum samples. We analysed attack rates, incubation periods of the virus, and risk factors for transmission. Findings 675 patients and 218 health-care workers were identified as contacts. MERS-CoV infection was confirmed in 82 individuals (33 patients, eight health-care workers, and 41 visitors). The attack rate was highest in group A (20% [23/117] vs 5% [3/58] in group B vs 1% [4/500] in group C; p<0·0001), and was 2% (5/218) in health-care workers. After excluding nine cases (because of inability to determine the date of symptom onset in six cases and lack of data from three visitors), the median incubation period was 7 days (range 2–17, IQR 5–10). The median incubation period was significantly shorter in group A than in group C (5 days [IQR 4–8] vs 11 days [6–12]; p<0·0001). There were no confirmed cases in patients and visitors who visited the emergency room on May 29 and who were exposed only to potentially contaminated environment without direct contact with the index case. The main risk factor for transmission of MERS-CoV was the location of exposure. Interpretation Our results showed increased transmission potential of MERS-CoV from a single patient in an overcrowded emergency room and provide compelling evidence that health-care facilities worldwide need to be prepared for emerging infectious diseases. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome

              Summary Background The worldwide outbreak of severe acute respiratory syndrome (SARS) is associated with a newly discovered coronavirus, SARS-associated coronavirus (SARSCoV). We did clinical and experimental studies to assess the role of this virus in the cause of SARS. Methods We tested clinical and postmortem samples from 436 SARS patients in six countries for infection with SARSCoV, human metapneumovirus, and other respiratory pathogens. We infected four cynomolgus macaques (Macaca fascicularis) with SARS-CoV in an attempt to replicate SARS and did necropsies on day 6 after infection. Findings SARS-CoV infection was diagnosed in 329 (75%) of 436 patients fitting the case definition of SARS; human metapneumovirus was diagnosed in 41 (12%) of 335, and other respiratory pathogens were diagnosed only sporadically. SARS-CoV was, therefore, the most likely causal agent of SARS. The four SARS-CoV-infected macaques excreted SARS-CoV from nose, mouth, and pharynx from 2 days after infection. Three of four macaques developed diffuse alveolar damage, similar to that in SARS patients, and characterised by epithelial necrosis, serosanguineous exudate, formation of hyaline membranes, type 2 pneumocyte hyperplasia, and the presence of syncytia. SARS-CoV was detected in pneumonic areas by virus isolation and RT-PCR, and was localised to alveolar epithelial cells and syncytia by immunohistochemistry and transmission electron microscopy. Interpretation Replication in SARS-CoV-infected macaques of pneumonia similar to that in human beings with SARS, combined with the high prevalence of SARS-CoV infection in SARS patients, fulfill the criteria required to prove that SARS-CoV is the primary cause of SARS. Published online July 22, 2003 http://image.thelancet.com/extras/03art6318web.pdf
                Bookmark

                Author and article information

                Journal
                Epidemiol Infect
                Epidemiol Infect
                HYG
                Epidemiology and Infection
                Cambridge University Press (Cambridge, UK )
                0950-2688
                1469-4409
                2021
                10 June 2021
                : 149
                : e142
                Affiliations
                [1 ]Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University , Uppsala, Sweden
                [2 ]Emergency Preparedness and Response Support, European Centre for Disease Prevention and Control , Stockholm, Sweden
                [3 ]Emerging, Food- and Vector-Borne Diseases, European Centre for Disease Prevention and Control , Stockholm, Sweden
                [4 ]Vaccine Preventable Diseases and Immunisation, European Centre for Disease Prevention and Control , Stockholm, Sweden
                Author notes
                Author for correspondence: E. Robesyn, E-mail: emmanuel.robesyn@ 123456ecdc.europa.eu
                Author information
                https://orcid.org/0000-0002-7487-9439
                https://orcid.org/0000-0001-6929-1086
                Article
                S095026882100131X
                10.1017/S095026882100131X
                8220025
                34108058
                f88f3da4-8704-401d-8162-68b2ae20b942
                © The Author(s) 2021

                This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 December 2020
                : 08 April 2021
                : 26 May 2021
                Page count
                Figures: 6, Tables: 9, References: 78, Pages: 14
                Categories
                Review

                Public health
                aircraft,coronavirus infection,in-flight transmission,mers-cov,middle east respiratory syndrome coronavirus,travel,ragida

                Comments

                Comment on this article