12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two predominant MUPs, OBP3 and MUP13, are male pheromones in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In rats, urine-borne male pheromones comprise organic volatile compounds and major urinary proteins (MUPs). A number of volatile pheromones have been reported, but no MUP pheromones have been identified in rat urine.

          Results

          We used sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing electrophoresis (IEF), nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) after in gel digestion of the proteins and quantitative real-time PCR (qRT -PCR) and showed that the levels of two MUPs, odorant -binding protein 3 (OBP3) (i.e. PGCL4) and MUP13 (i.e. PGCL1), in urine and their mRNAs in liver were higher in males than in females and were suppressed by orchidectomy and restored by testosterone treatment (T treatment). We then generated recombinant MUPs (rMUPs) and found that the sexual attractiveness of urine from castrated males to females significantly increased after the addition of either recombinant OBP3 (rOBP3) or recombinant MUP13 (rMUP13). Using c-Fos immunohistochemistry, we further examined neuronal activation in the brains of female rats after they sniffed rOBP3 or rMUP13. Both rOBP3 and rMUP13 activated the accessory olfactory bulb (AOB), medial preoptic area (MPA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), posteromedial cortical amygdala (PMCo) and ventromedial nucleus of the hypothalamus (VMH), which participate in the neural circuits responsible for pheromone-induced sexual behaviours. In particular, more c-Fos-immunopositive (c-Fos-ir) cells were observed in the posterior AOB than in the anterior AOB.

          Conclusions

          The expression of OBP3 and MUP13 was male-biased and androgen-dependent. They attracted females and activated brain areas related to sexual behaviours in female rats, suggesting that both OBP3 and MUP13 are male pheromones in rats. Particularly, an OBP excreted into urine was exemplified to be a chemical signal.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of protein pheromones that promote aggressive behaviour.

          Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer*

            The quadrupole Orbitrap mass spectrometer (Q Exactive) made a powerful proteomics instrument available in a benchtop format. It significantly boosted the number of proteins analyzable per hour and has now evolved into a proteomics analysis workhorse for many laboratories. Here we describe the Q Exactive Plus and Q Exactive HF mass spectrometers, which feature several innovations in comparison to the original Q Exactive instrument. A low-resolution pre-filter has been implemented within the injection flatapole, preventing unwanted ions from entering deep into the system, and thereby increasing its robustness. A new segmented quadrupole, with higher fidelity of isolation efficiency over a wide range of isolation windows, provides an almost 2-fold improvement of transmission at narrow isolation widths. Additionally, the Q Exactive HF has a compact Orbitrap analyzer, leading to higher field strength and almost doubling the resolution at the same transient times. With its very fast isolation and fragmentation capabilities, the instrument achieves overall cycle times of 1 s for a top 15 to 20 higher energy collisional dissociation method. We demonstrate the identification of 5000 proteins in standard 90-min gradients of tryptic digests of mammalian cell lysate, an increase of over 40% for detected peptides and over 20% for detected proteins. Additionally, we tested the instrument on peptide phosphorylation enriched samples, for which an improvement of up to 60% class I sites was observed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pheromonal communication in vertebrates.

              Recent insights have revolutionized our understanding of the importance of chemical signals in influencing vertebrate behaviour. Previously unknown families of pheromonal signals have been identified that are expanding the traditional definition of a pheromone. Although previously regarded as functioning independently, the main olfactory and vomeronasal systems have been found to have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Studies using gene-targeted mice have revealed an unexpected diversity of chemosensory systems and their underlying cellular and molecular mechanisms. Future developments could show how the functions of the different chemosensory systems are integrated to regulate innate and learned behavioural and physiological responses to pheromones.
                Bookmark

                Author and article information

                Contributors
                zhangyh@ioz.ac.cn
                zhangjx@ioz.ac.cn
                Journal
                Front Zool
                Front. Zool
                Frontiers in Zoology
                BioMed Central (London )
                1742-9994
                23 February 2018
                23 February 2018
                2018
                : 15
                : 6
                Affiliations
                [1 ]ISNI 0000 0004 1792 6416, GRID grid.458458.0, State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, , Institute of Zoology, Chinese Academy of Sciences, ; 1-5 Beichen West Road, Beijing, 100101 China
                [2 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, University of Chinese Academy of Sciences, ; Beijing, 100049 China
                Author information
                http://orcid.org/0000-0002-6318-413X
                Article
                254
                10.1186/s12983-018-0254-0
                5824612
                29483934
                f8a1f1b1-902c-4f00-a76e-ea3e190234ac
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 August 2017
                : 2 February 2018
                Funding
                Funded by: Strategic Priority Research Program of the Chinese Academy of Sciences
                Award ID: XDB11010400
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31572277
                Award ID: 31672306
                Award Recipient :
                Funded by: Foundation of State Key Laboratory of IPM
                Award ID: ChineseIPM1701
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Animal science & Zoology
                mups,male pheromones,female attraction,activation of neural pathways
                Animal science & Zoology
                mups, male pheromones, female attraction, activation of neural pathways

                Comments

                Comment on this article