33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The NAD World 2.0: the importance of the inter-tissue communication mediated by NAMPT/NAD +/SIRT1 in mammalian aging and longevity control

      review-article
      1 , *
      NPJ Systems Biology and Applications
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The original concept of the NAD World was proposed in 2009, providing a comprehensive framework to investigate critical issues of biological robustness and trade-offs in mammalian aging and longevity control. Significant progress has been made over the past 7 years, advancing our understanding of the mechanisms by which biological robustness is maintained, and providing extensive support to the concept of the NAD World. Three key organs and tissues have been identified as basic elements in this control system for mammalian aging and longevity: the hypothalamus as the control center of aging, skeletal muscle as an effector, and adipose tissue as a modulator. While the hypothalamus sends a signal to skeletal muscle through the sympathetic nervous system, adipose tissue remotely regulates hypothalamic function by coordinating NAD + biosynthesis at a systemic level. Skeletal muscle might also communicate with other organs and tissues by secreting various myokines. The mammalian NAD +-dependent protein deacetylase SIRT1 and the key NAD + biosynthetic enzyme NAMPT mediate these inter-tissue communications. In this review, the function of each organ or tissue and their inter-tissue communications will be discussed in terms of understanding mammalian aging and longevity control. With such an emphasis on the system architecture, the concept is now reformulated as the NAD World 2.0, providing several important predictions. The concept of the NAD World 2.0 will provide a new foundation to understand a control system for mammalian aging and longevity and accelerate the development of an effective anti-aging intervention for humans.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian sirtuins: biological insights and disease relevance.

          Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.

            Members of the sirtuin (SIRT) family of NAD-dependent deacetylases promote longevity in multiple organisms. Deficiency of mammalian SIRT6 leads to shortened life span and an aging-like phenotype in mice, but the underlying molecular mechanisms are unclear. Here we show that SIRT6 functions at chromatin to attenuate NF-kappaB signaling. SIRT6 interacts with the NF-kappaB RELA subunit and deacetylates histone H3 lysine 9 (H3K9) at NF-kappaB target gene promoters. In SIRT6-deficient cells, hyperacetylation of H3K9 at these target promoters is associated with increased RELA promoter occupancy and enhanced NF-kappaB-dependent modulation of gene expression, apoptosis, and cellular senescence. Computational genomics analyses revealed increased activity of NF-kappaB-driven gene expression programs in multiple Sirt6-deficient tissues in vivo. Moreover, haploinsufficiency of RelA rescues the early lethality and degenerative syndrome of Sirt6-deficient mice. We propose that SIRT6 attenuates NF-kappaB signaling via H3K9 deacetylation at chromatin, and hyperactive NF-kappaB signaling may contribute to premature and normal aging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Five stages of evolving beta-cell dysfunction during progression to diabetes.

              This article proposes five stages in the progression of diabetes, each of which is characterized by different changes in beta-cell mass, phenotype, and function. Stage 1 is compensation: insulin secretion increases to maintain normoglycemia in the face of insulin resistance and/or decreasing beta-cell mass. This stage is characterized by maintenance of differentiated function with intact acute glucose-stimulated insulin secretion (GSIS). Stage 2 occurs when glucose levels start to rise, reaching approximately 5.0-6.5 mmol/l; this is a stable state of beta-cell adaptation with loss of beta-cell mass and disruption of function as evidenced by diminished GSIS and beta-cell dedifferentiation. Stage 3 is a transient unstable period of early decompensation in which glucose levels rise relatively rapidly to the frank diabetes of stage 4, which is characterized as stable decompensation with more severe beta-cell dedifferentiation. Finally, stage 5 is characterized by severe decompensation representing a profound reduction in beta-cell mass with progression to ketosis. Movement across stages 1-4 can be in either direction. For example, individuals with treated type 2 diabetes can move from stage 4 to stage 1 or stage 2. For type 1 diabetes, as remission develops, progression from stage 4 to stage 2 is typically found. Delineation of these stages provides insight into the pathophysiology of both progression and remission of diabetes.
                Bookmark

                Author and article information

                Journal
                NPJ Syst Biol Appl
                NPJ Syst Biol Appl
                NPJ Systems Biology and Applications
                Nature Publishing Group
                2056-7189
                18 August 2016
                2016
                : 2
                : 16018
                Affiliations
                [1 ]Department of Developmental Biology, Washington University School of Medicine , St Louis, MO, USA
                Author notes
                Article
                npjsba201618
                10.1038/npjsba.2016.18
                5516857
                28725474
                f8be19a0-5ec3-4e5d-8164-5b65748865f1
                Copyright © 2016 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 07 February 2016
                : 07 July 2016
                : 08 July 2016
                Categories
                Review Article

                Comments

                Comment on this article