8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          99mTc tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a 99mTc-tricarbonyl precursor with a low oxidation state (I). 99mTc(CO) 3(H 2O) 3 + was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of 99mTc-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of 99mTc-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of 99mTc-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of 99mTc tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of 99mTc-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of 99mTc tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a 99mTc-tricarbonyl- based biomolecular imaging probe.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          A Novel Organometallic Aqua Complex of Technetium for the Labeling of Biomolecules:  Synthesis of [99mTc(OH2)3(CO)3]+from [99mTcO4]-in Aqueous Solution and Its Reaction with a Bifunctional Ligand

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Peptides and peptide hormones for molecular imaging and disease diagnosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel polar single amino acid chelates for technetium-99m tricarbonyl-based radiopharmaceuticals with enhanced renal clearance: application to octreotide.

              Single amino acid chelate (SAAC) systems for the incorporation of the M(CO)(3) moiety (M = Tc/Re) have been successfully incorporated into novel synthetic strategies for radiopharmaceuticals and evaluated in a variety of biological applications. However, the lipophilicity of the first generation Tc(CO)(3)-dipyridyl complexes has resulted in substantial hepatobiliary uptake when either examined as lysine derivatives or integrated into biologically active small molecules and peptides. Here we designed, synthesized, and evaluated novel SAAC systems that have been chemically modified to promote overall Tc(CO)(3)L(3) complex hydrophilicity with the intent of enhancing renal clearance. A series of lysine derived SAAC systems containing functionalized polar imidazole rings and/or carboxylic acids were synthesized via reductive alkylation of the epsilon amino group of lysine. The SAAC systems were radiolabeled with (99m)Tc, purified, and evaluated for radiochemical stability, lipophilicity, and tissue distribution in rats. The log P values of the (99m)Tc complexes were determined experimentally and ranged from -0.91 to -2.33. The resulting complexes were stable (>90%) for at least 24 h. Tissue distribution in normal rats of the lead (99m)Tc complexes demonstrated decreased liver ( 15 %ID/g) at 2 h after injection compared to the dipyridyl lysine complex (DpK). One of the new SAAC ligands, [(99m)Tc]bis-carboxymethylimidazole lysine, was conjugated to the N-terminus of Tyr-3 octreotide and evaluated for localization in nude mice bearing AR42J xenografts to examine tissue distribution, tumor uptake and retention, clearance, and route of excretion for comparison to (111)In-DOTA-Tyr-3-octreotide and (99m)Tc-DpK-Tyr-3-octreotide. (99m)Tc-bis-(carboxymethylimidazole)-lysine-Tyr-3-octreotide exhibited significantly less liver uptake and gastrointestinal clearance compared to (99m)Tc-DpK-Tyr-3-octreotide while maintaining tumor uptake in the same mouse model. These novel chelators demonstrate that lipophilicity can be controlled and organ distribution significantly altered, opening up broad application of these novel SAAC systems for radiopharmaceutical design.
                Bookmark

                Author and article information

                Journal
                Toxicol Res
                Toxicol Res
                ksot
                Toxicological Research
                The Korean Society of Toxicology
                1976-8257
                December 2012
                : 28
                : 4
                : 235-240
                Affiliations
                Radioisotope Science Laboratory, Korea Atomic Energy Research Institute, Jeonbuk, Korea
                Author notes
                Correspondence to: Sang Hyun Park, Radioisotope Science Laboratory, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, Jeonbuk 580-185, Korea E-mail: parksh@ 123456kaeri.re.kr
                Article
                toxicr-28-235
                10.5487/TR.2012.28.4.235
                3834432
                f9363719-0f4e-4402-a65d-86be9f2af94d
                Copyright ©2012, The Korean Society of Toxicology

                This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 September 2012
                : 30 November 2012
                : 03 December 2012
                Categories
                Articles

                99mtc-tricarbonyl precursor,glycine oligomer,imaging moiety,biomolecule tracing

                Comments

                Comment on this article