16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hydrodynamic drag constrains head enlargement for mouthbrooding in cichlids

      , ,
      Journal of The Royal Society Interface
      The Royal Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the superflock of cichlid fishes from Lake Victoria, East Africa.

          Lake Victoria harbors a unique species-rich flock of more than 500 endemic haplochromine cichlid fishes. The origin, age, and mechanism of diversification of this extraordinary radiation are still debated. Geological evidence suggests that the lake dried out completely about 14,700 years ago. On the basis of phylogenetic analyses of almost 300 DNA sequences of the mitochondrial control region of East African cichlids, we find that the Lake Victoria cichlid flock is derived from the geologically older Lake Kivu. We suggest that the two seeding lineages may have already been lake-adapted when they colonized Lake Victoria. A haplotype analysis further shows that the most recent desiccation of Lake Victoria did not lead to a complete extinction of its endemic cichlid fauna and that the major lineage diversification took place about 100,000 years ago.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies.

            African cichlid fishes have repeatedly evolved highly specialized modes of feeding through adaptations of their oral jaws. Here, we explore the molecular genetic basis of the opening and closing lever mechanisms of the cichlid lower jaw, which have traditionally been used to describe the mechanics of feeding behavior in bony fishes. Quantitative genetic analyses demonstrate that the opening and closing mechanisms are genetically modular and therefore free to evolve independently. Bmp4 (bone morphogenetic protein 4) is one of two loci that segregate with the mechanical advantage of closing and that together account for >30% of the phenotypic variance in this trait. Species-specific differences in jaw shape are obvious early in cichlid larval development and are correlated with patterns of bmp4 expression in the mandibular primordium. When bmp4 is overexpressed in the obligate suction feeder Danio rerio, mandibular morphology exhibits specific transformations of opening and closing lever ratios. We conclude that patterns of morphological integration of the cichlid jaw reflect a balance among conflicting functional demands. Further, we demonstrate that bmp4 has the potential to alter mandibular morphology in a way that mimics adaptive variation among fish species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild.

              The relationship between phenotype and fitness can be visualized as a rugged landscape. Multiple fitness peaks on this landscape are predicted to drive early bursts of niche diversification during adaptive radiation. We measured the adaptive landscape in a nascent adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas, and found multiple coexisting high-fitness regions driven by increased competition at high densities, supporting the early burst model. Hybrids resembling the generalist phenotype were isolated on a local fitness peak separated by a valley from a higher-fitness region corresponding to trophic specialization. This complex landscape could explain both the rarity of specialists across many similar environments due to stabilizing selection on generalists and the rapid morphological diversification rate of specialists due to their higher fitness.
                Bookmark

                Author and article information

                Journal
                Journal of The Royal Society Interface
                J. R. Soc. Interface
                The Royal Society
                1742-5689
                1742-5662
                July 29 2015
                July 29 2015
                : 12
                : 109
                : 20150461
                Article
                10.1098/rsif.2015.0461
                f93bda9d-8028-4584-8b95-dcd2af42b73a
                © 2015
                History

                Comments

                Comment on this article