17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Realization of Osteolysis, Angiogenesis, Immunosuppression, and Drug Resistance by Extracellular Vesicles: Roles of RNAs and Proteins in Their Cargoes and of Ectonucleotidases of the Immunosuppressive Adenosinergic Noncanonical Pathway in the Bone Marrow Niche of Multiple Myeloma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Multiple myeloma (MM) is a disease that extensively involves bone, and angiogenesis and immunosuppression are important processes in the development of MM. Proteasome inhibitors and immunomodulatory drugs remarkably improve the survival of MM patients. However, MM is still an incurable disease that rapidly becomes resistant to these drugs. There is robust evidence that extracellular vesicles (EVs) contribute to cancer metastasis. Osteoclasts, in addition to immunosuppressive cells in the bone marrow (BM), are key players in osteolysis and immunosuppression. BM stromal cells and MM cells secrete EVs through which they communicate with each other: EVs, in fact, contain proteins, small RNAs, and long non-coding RNAs that mediate this communication and contribute to angiogenesis, osteolysis, and cancer dissemination and drug resistance. Ectoenzymes are expressed in myeloma cells, osteoclasts, and stromal cells and produce immunosuppressive adenosine. Recently, an antibody targeting CD38, an ectoenzyme, has been shown to improve the survival of patients with MM. Thus, understanding the properties of EV and ectoenzymes will help elucidate key processes of MM development.

          Abstract

          Angiogenesis and immunosuppression promote multiple myeloma (MM) development, and osteolysis is a primary feature of MM. Although immunomodulatory drugs and proteasome inhibitors (PIs) markedly improve the survival of patients with MM, this disease remains incurable. In the bone marrow niche, a chain of ectoenzymes, including CD38, produce immunosuppressive adenosine, inhibiting T cell proliferation as well as immunosuppressive cells. Therefore, anti-CD38 antibodies targeting myeloma cells have the potential to restore T cell responses to myeloma cells. Meanwhile extracellular vesicles (EVs) containing microRNAs, proteins such as cytokines and chemokines, long noncoding RNAs, and PIWI-interacting RNAs have been shown to act as communication tools in myeloma cell/microenvironment interactions. Via EVs, mesenchymal stem cells allow myeloma cell dissemination and confer PI resistance, whereas myeloma cells promote angiogenesis, myeloid-derived suppressor cell proliferation, and osteoclast differentiation and inhibit osteoblast differentiation. In this review, to understand key processes of MM development involving communication between myeloma cells and other cells in the tumor microenvironment, EV cargo and the non-canonical adenosinergic pathway are introduced, and ectoenzymes and EVs are discussed as potential druggable targets for the treatment of MM patients.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication

          The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation

            The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution, and functions. By employing asymmetric-flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed “exomeres” (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins and specific pathways, such as glycolysis and mTOR signaling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signaling pathways, respectively. Exo-S, Exo-L, and exomeres each had unique N -glycosylation, protein, lipid, and DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating and addressing the complexities of heterogeneous nanoparticle subpopulations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developmentally regulated piRNA clusters implicate MILI in transposon control.

              Nearly half of the mammalian genome is composed of repeated sequences. In Drosophila, Piwi proteins exert control over transposons. However, mammalian Piwi proteins, MIWI and MILI, partner with Piwi-interacting RNAs (piRNAs) that are depleted of repeat sequences, which raises questions about a role for mammalian Piwi's in transposon control. A search for murine small RNAs that might program Piwi proteins for transposon suppression revealed developmentally regulated piRNA loci, some of which resemble transposon master control loci of Drosophila. We also find evidence of an adaptive amplification loop in which MILI catalyzes the formation of piRNA 5' ends. Mili mutants derepress LINE-1 (L1) and intracisternal A particle and lose DNA methylation of L1 elements, demonstrating an evolutionarily conserved role for PIWI proteins in transposon suppression.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                13 June 2021
                June 2021
                : 13
                : 12
                : 2969
                Affiliations
                Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu City 514-8507, Japan; twatanabe@ 123456med.mie-u.ac.jp
                Article
                cancers-13-02969
                10.3390/cancers13122969
                8231946
                f9400bd7-6bda-46f4-8721-ebe5e33422fa
                © 2021 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 08 May 2021
                : 10 June 2021
                Categories
                Review

                multiple myeloma,isatuximab,daratumumab,mesenchymal stem cells,osteoclasts,ectoenzyme,cd38,extracellular vesicle,exosome,microrna,long noncoding rna,piwi-interacting rna

                Comments

                Comment on this article