23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Nutrition Programming ( in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Healthy gastrointestinal tract (GIT) is crucial for optimum performance, better feed efficiency, and overall health of poultry. In the past, antibiotic growth promoters (AGP) were commonly used to modulate the gut health of animals. However, considering the public health concern, the use of AGP in animal feeding is banned or regulated in several jurisdictions around the world. This necessitates the need for alternative nutritional strategies to produce healthy poultry. For that, several alternatives to AGP have been attempted with some success. However, effective modulation of the gut health parameters depends on the methods and timing of the compound being available to host animals. Routinely, the alternatives to AGP and other nutrients are provided in feed or water to poultry. However, the GIT of the newly hatched poultry is functionally immature, despite going through significant morphological, cellular, and molecular changes toward the end of incubation. Thus, early growth and development of GIT are of critical importance to enhance nutrients utilization and optimize the growth of poultry. Early nutrition programming using both in ovo and post-hatch feeding has been used as a means to modulate the early growth and development of GIT and found to be an effective strategy but with inconsistent results. This review summarizes the information on in ovo and post-hatch-feeding of different nutrients and feeds additives and their effects on gut development, histomorphology, microbiology, and immunology. Furthermore, this review will provide insight on the future of early nutrition programming as a strategy to enhance gut health, thereby improving overall health and production so that the poultry industry can benefit from this technique.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry

          Poultry is widely produced and consumed meat globally. Its demand is expected to continue increasing to meet the animal protein requirement for ever-increasing human population. Thus, the challenge that poultry scientists and industry face are to produce sufficient amount of poultry meat in the most efficient way. In the past, using antibiotics to promote the growth of poultry and manage gut microbiota was a norm. However, due to concerns over potential fatalistic impacts on food animals and indirectly to humans, their use as feed additives are banned or regulated in several jurisdictions. In this changed context, several alternative strategies have been proposed with some success that mimics the functions of antibiotics as growth promoters and modulate gut microbiota for their beneficial roles. These include the use of probiotics, prebiotics, organic acids, and exogenous enzyme, among others. Gut microbiota and their metabolic products improve nutrient digestion, absorption, metabolism, and overall health and growth performance of poultry. This paper reviews the available information on the effect of feed additives used to modulate intestinal microbiota of poultry and their effects on overall health and growth performance. Understanding these functions and interactions will help to develop new dietary and managerial strategies that will ultimately lead to enhanced feed utilization and improved growth performance of poultry. This review will help future researchers and industry to identify alternative feed ingredients having properties like prebiotics, probiotics, organic acids, and exogenous enzymes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?

            Glutamine is normally considered to be a nonessential amino acid. However, recent studies have provided evidence that glutamine may become "conditionally essential" during inflammatory conditions such as infection and injury. It is now well documented that under appropriate conditions, glutamine is essential for cell proliferation, that it can act as a respiratory fuel and that it can enhance the function of stimulated immune cells. Studies thus far have determined the effect of extracellular glutamine concentration on lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities and neutrophil bacterial killing. Other cells of the immune system remain to be studied. The high rate of glutamine utilization and its importance to the function of lymphocytes, macrophages and neutrophils have raised the question "why glutamine?" because these cells have access to a variety of metabolic fuels both in vivo and in vitro. I have attempted to answer this question in this article. Additionally, knowledge of the rate of utilization and the pathway of metabolism of glutamine by cells of the immune system raises some intriguing questions concerning therapeutic manipulation of utilization of this amino acid such that the proliferative, phagocytic and secretory capacities of cells of the defense system may be beneficially altered. Evidence to support the hypothesis that glutamine is beneficially immunomodulatory in animal models of infection and trauma, as well as trauma in humans, is provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exogenous enzymes for pigs and poultry.

              Many feed ingredients in use in monogastric diets contain significant quantities of antinutritional factors (ANF) which limit both their feed value and their use. Almost all enzymes currently being used address such factors to varying degrees, allowing for more economic utilization of raw materials. However, animal response to xylanase, beta-glucanase and even phytase utilization reported in the literature tends to vary. Factors such as enzyme source, ingredient variety and environment under which the ingredient was grown, stored and processed into animal feed, age of animal, interaction with other dietary ingredients, and health status are shown to affect significantly the response obtained. As a result, the mode of action of xylanases and beta-glucanases is still debated due to too much emphasis being placed on interpretation of individual trial results without regard to the interactive factors or the literature dataset as a whole. Better understanding of such factors will improve data interpretation. While results with phytase are not subject to such extreme variation, they are nevertheless inconsistent in the degree to which inorganic phosphorus can be replaced by this enzyme. Greater understanding of the ANF and factors which interact to govern the response to added exogenous enzymes will undoubtedly improve the economic return and confidence in their use. Improved knowledge of ANF structure will result in development of enzymes directed towards far more specific targets, which enhances the likelihood of success and should reduce the overall enzyme usage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                21 March 2019
                2019
                : 6
                : 82
                Affiliations
                [1] 1Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa , Honolulu, HI, United States
                [2] 2Trouw Nutrition, Poultry Research Centre , Toledo, Spain
                Author notes

                Edited by: Pietro Celi, DSM, United States

                Reviewed by: Michael Kogut, Agricultural Research Service, United States; Kyung-Woo Lee, Konkuk University, South Korea

                *Correspondence: Rajesh Jha rjha@ 123456hawaii.edu

                This article was submitted to Animal Nutrition and Metabolism, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2019.00082
                6437089
                30949488
                f94d22ba-dc0c-4830-a381-205efdfa6365
                Copyright © 2019 Jha, Singh, Yadav, Berrocoso and Mishra.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 January 2019
                : 27 February 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 113, Pages: 10, Words: 9923
                Categories
                Veterinary Science
                Review

                broilers,gut health,histomorphology,immune system,in ovo feeding,post-hatch,nutritional strategy,poultry

                Comments

                Comment on this article