27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes.

      Cell Calcium
      3T3 Cells, metabolism, Aniline Compounds, chemistry, Animals, Brain Neoplasms, Calcium, Cell Line, Fluorescent Dyes, Mice, Microscopy, Fluorescence, Spectrometry, Fluorescence, Xanthenes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have developed fluo-4, a new fluorescent dye for quantifying cellular Ca2+ concentrations in the 100 nM to 1 microM range. Fluo-4 is similar in structure and spectral properties to the widely used fluorescent Ca(2+)-indicator dye, fluo-3, but it has certain advantages over fluo-3. Due to its greater absorption near 488 nm, fluo-4 offers substantially brighter fluorescence emission when used with excitation by argon-ion laser or other sources in conjunction with the standard fluorescein filter set. In vitro, fluo-4 exhibited high fluorescence emission, a high rate of cell permeation, and a large dynamic range for reporting [Ca2+] around a Kd(Ca2+) of 345 nM. We have also developed several Ca(2+)-indicators related to fluo-4 having lower affinities for Ca2+ that are useful in cellular studies requiring quantification of higher [Ca2+]. In a variety of physiological studies of live cells, fluo-4 labeled cells more brightly than did fluo-3, when challenged with procedures designed to elevate calcium levels. Fluo-4 is well suited for photometric and imaging applications that make use of confocal laser scanning microscopy, flow cytometry, or spectrofluorometry, or in fluorometric high-throughput microplate screening assays. Because of its higher fluorescence emission intensity, fluo-4 can be used at lower intracellular concentrations, making its use a less invasive practice.

          Related collections

          Author and article information

          Comments

          Comment on this article