33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High sensitivity and interindividual variability in the response of the human circadian system to evening light

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Electric lighting has fundamentally altered how the human circadian clock synchronizes to the day/night cycle. Exposure to light after dusk is pervasive in the modern world. We examined group-level sensitivity of the circadian system to evening light and the degree to which sensitivity varies between individuals. We found that, on average, humans are highly sensitive to evening light. Specifically, 50% suppression of melatonin occurred at <30 lux, which is comparable to or lower than typical indoor lighting used at night, as well as light produced by electronic devices. Significantly, there was a >50-fold difference in sensitivity to evening light across individuals. Interindividual differences in light sensitivity may explain differential vulnerability to circadian disruption and subsequent impact on human health.

          Abstract

          Before the invention of electric lighting, humans were primarily exposed to intense (>300 lux) or dim (<30 lux) environmental light—stimuli at extreme ends of the circadian system’s dose–response curve to light. Today, humans spend hours per day exposed to intermediate light intensities (30–300 lux), particularly in the evening. Interindividual differences in sensitivity to evening light in this intensity range could therefore represent a source of vulnerability to circadian disruption by modern lighting. We characterized individual-level dose–response curves to light-induced melatonin suppression using a within-subjects protocol. Fifty-five participants (aged 18–30) were exposed to a dim control (<1 lux) and a range of experimental light levels (10–2,000 lux for 5 h) in the evening. Melatonin suppression was determined for each light level, and the effective dose for 50% suppression (ED 50) was computed at individual and group levels. The group-level fitted ED 50 was 24.60 lux, indicating that the circadian system is highly sensitive to evening light at typical indoor levels. Light intensities of 10, 30, and 50 lux resulted in later apparent melatonin onsets by 22, 77, and 109 min, respectively. Individual-level ED 50 values ranged by over an order of magnitude (6 lux in the most sensitive individual, 350 lux in the least sensitive individual), with a 26% coefficient of variation. These findings demonstrate that the same evening-light environment is registered by the circadian system very differently between individuals. This interindividual variability may be an important factor for determining the circadian clock’s role in human health and disease.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.

          In the mammalian retina, besides the conventional rod-cone system, a melanopsin-associated photoreceptive system exists that conveys photic information for accessory visual functions such as pupillary light reflex and circadian photo-entrainment. On ablation of the melanopsin gene, retinal ganglion cells that normally express melanopsin are no longer intrinsically photosensitive. Furthermore, pupil reflex, light-induced phase delays of the circadian clock and period lengthening of the circadian rhythm in constant light are all partially impaired. Here, we investigated whether additional photoreceptive systems participate in these responses. Using mice lacking rods and cones, we measured the action spectrum for phase-shifting the circadian rhythm of locomotor behaviour. This spectrum matches that for the pupillary light reflex in mice of the same genotype, and that for the intrinsic photosensitivity of the melanopsin-expressing retinal ganglion cells. We have also generated mice lacking melanopsin coupled with disabled rod and cone phototransduction mechanisms. These animals have an intact retina but fail to show any significant pupil reflex, to entrain to light/dark cycles, and to show any masking response to light. Thus, the rod-cone and melanopsin systems together seem to provide all of the photic input for these accessory visual functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.

            Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian × m(2)) [W/(sr × m(2))], 2.1 × 10(13) photons/(cm(2) × s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr × m(2)), 0.7 × 10(13) photons/(cm(2) × s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by "explicit timing"; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sex difference in the near-24-hour intrinsic period of the human circadian timing system.

              The circadian rhythms of melatonin and body temperature are set to an earlier hour in women than in men, even when the women and men maintain nearly identical and consistent bedtimes and wake times. Moreover, women tend to wake up earlier than men and exhibit a greater preference for morning activities than men. Although the neurobiological mechanism underlying this sex difference in circadian alignment is unknown, multiple studies in nonhuman animals have demonstrated a sex difference in circadian period that could account for such a difference in circadian alignment between women and men. Whether a sex difference in intrinsic circadian period in humans underlies the difference in circadian alignment between men and women is unknown. We analyzed precise estimates of intrinsic circadian period collected from 157 individuals (52 women, 105 men; aged 18-74 y) studied in a month-long inpatient protocol designed to minimize confounding influences on circadian period estimation. Overall, the average intrinsic period of the melatonin and temperature rhythms in this population was very close to 24 h [24.15 ± 0.2 h (24 h 9 min ± 12 min)]. We further found that the intrinsic circadian period was significantly shorter in women [24.09 ± 0.2 h (24 h 5 min ± 12 min)] than in men [24.19 ± 0.2 h (24 h 11 min ± 12 min); P < 0.01] and that a significantly greater proportion of women have intrinsic circadian periods shorter than 24.0 h (35% vs. 14%; P < 0.01). The shorter average intrinsic circadian period observed in women may have implications for understanding sex differences in habitual sleep duration and insomnia prevalence.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                11 June 2019
                28 May 2019
                28 May 2019
                : 116
                : 24
                : 12019-12024
                Affiliations
                [1] aTurner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University , Melbourne, Victoria, Australia
                Author notes
                2To whom correspondence should be addressed. Email: sean.cain@ 123456monash.edu .

                Edited by Diane B. Boivin, Douglas Mental Health University Institute, McGill University, Montreal, Canada, and accepted by Editorial Board Member Michael Rosbash April 20, 2019 (received for review February 3, 2019)

                Author contributions: S.W.L. and S.W.C. designed research; P.V., A.C.B., and E.M.M. performed research; A.J.K.P., P.V., A.C.B., E.M.M., S.W.L., and S.W.C. analyzed data; and A.J.K.P., P.V., A.C.B., E.M.M., C.A., S.M.W.R., S.W.L., and S.W.C. wrote the paper.

                1A.J.K.P. and P.V. contributed equally to this work.

                Author information
                http://orcid.org/0000-0002-5086-4865
                http://orcid.org/0000-0002-8385-1550
                Article
                201901824
                10.1073/pnas.1901824116
                6575863
                31138694
                f98d6769-5f5f-48cf-981a-2029248b254e
                Copyright © 2019 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                Page count
                Pages: 6
                Funding
                Funded by: Department of Health | National Health and Medical Research Council (NHMRC) 501100000925
                Award ID: 1064231
                Award Recipient : Clare Anderson Award Recipient : Shantha MW Rajaratnam Award Recipient : Steven W Lockley Award Recipient : Sean W Cain
                Categories
                Biological Sciences
                Neuroscience

                circadian rhythms,light sensitivity,circadian disruption,melatonin suppression,evening light

                Comments

                Comment on this article