58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cholera

      , , , ,
      The Lancet
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cholera is an acute, watery diarrhoeal disease caused by Vibrio cholerae of the O1 or O139 serogroups. In the past two centuries, cholera has emerged and spread from the Ganges Delta six times and from Indonesia once to cause global pandemics. Rational approaches to the case management of cholera with oral and intravenous rehydration therapy have reduced the case fatality of cholera from more than 50% to much less than 1%. Despite improvements in water quality, sanitation, and hygiene, as well as in the clinical treatment of cholera, the disease is still estimated to cause about 100 000 deaths every year. Most deaths occur in cholera-endemic settings, and virtually all deaths occur in developing countries. Contemporary understanding of immune protection against cholera, which results from local intestinal immunity, has yielded safe and protective orally administered cholera vaccines that are now globally stockpiled for use in the control of both epidemic and endemic cholera.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Updated Global Burden of Cholera in Endemic Countries

          Background The global burden of cholera is largely unknown because the majority of cases are not reported. The low reporting can be attributed to limited capacity of epidemiological surveillance and laboratories, as well as social, political, and economic disincentives for reporting. We previously estimated 2.8 million cases and 91,000 deaths annually due to cholera in 51 endemic countries. A major limitation in our previous estimate was that the endemic and non-endemic countries were defined based on the countries’ reported cholera cases. We overcame the limitation with the use of a spatial modelling technique in defining endemic countries, and accordingly updated the estimates of the global burden of cholera. Methods/Principal Findings Countries were classified as cholera endemic, cholera non-endemic, or cholera-free based on whether a spatial regression model predicted an incidence rate over a certain threshold in at least three of five years (2008-2012). The at-risk populations were calculated for each country based on the percent of the country without sustainable access to improved sanitation facilities. Incidence rates from population-based published studies were used to calculate the estimated annual number of cases in endemic countries. The number of annual cholera deaths was calculated using inverse variance-weighted average case-fatality rate (CFRs) from literature-based CFR estimates. We found that approximately 1.3 billion people are at risk for cholera in endemic countries. An estimated 2.86 million cholera cases (uncertainty range: 1.3m-4.0m) occur annually in endemic countries. Among these cases, there are an estimated 95,000 deaths (uncertainty range: 21,000-143,000). Conclusion/Significance The global burden of cholera remains high. Sub-Saharan Africa accounts for the majority of this burden. Our findings can inform programmatic decision-making for cholera control.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cholera

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Refractory periods and climate forcing in cholera dynamics.

              Outbreaks of many infectious diseases, including cholera, malaria and dengue, vary over characteristic periods longer than 1 year. Evidence that climate variability drives these interannual cycles has been highly controversial, chiefly because it is difficult to isolate the contribution of environmental forcing while taking into account nonlinear epidemiological dynamics generated by mechanisms such as host immunity. Here we show that a critical interplay of environmental forcing, specifically climate variability, and temporary immunity explains the interannual disease cycles present in a four-decade cholera time series from Matlab, Bangladesh. We reconstruct the transmission rate, the key epidemiological parameter affected by extrinsic forcing, over time for the predominant strain (El Tor) with a nonlinear population model that permits a contributing effect of intrinsic immunity. Transmission shows clear interannual variability with a strong correspondence to climate patterns at long periods (over 7 years, for monsoon rains and Brahmaputra river discharge) and at shorter periods (under 7 years, for flood extent in Bangladesh, sea surface temperatures in the Bay of Bengal and the El Niño-Southern Oscillation). The importance of the interplay between extrinsic and intrinsic factors in determining disease dynamics is illustrated during refractory periods, when population susceptibility levels are low as the result of immunity and the size of cholera outbreaks only weakly reflects climate forcing.
                Bookmark

                Author and article information

                Journal
                The Lancet
                The Lancet
                Elsevier BV
                01406736
                March 2017
                March 2017
                :
                :
                Article
                10.1016/S0140-6736(17)30559-7
                28302312
                f9c3e57f-c24f-45fa-8d89-eff9ce4d8b0e
                © 2017

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article