6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      20(S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gallbladder cancer (GBC), the most frequent malignancy of the biliary tract, is associated with high mortality and extremely poor prognosis. 20(S)-ginsenoside Rg3 (20(S)-Rg3) is a steroidal saponin with high pharmacological activity. However, the anticancer effect of 20(S)-Rg3 in human GBC has not yet been determined. In this study, we primarily found that 20(S)-Rg3 exposure suppressed the survival of both NOZ and GBC-SD cell lines in a concentration-dependent manner. Moreover, induction of cellular senescence and G 0/G 1 arrest by 20(S)-Rg3 were accompanied by a large accumulation of p53 and p21 as a result of murine double minute 2 (MDM2) inhibition. 20(S)-Rg3 also caused a remarkable increase in apoptosis via the activation of the mitochondrial-mediated intrinsic caspase pathway. Furthermore, intraperitoneal injection of 20(S)-Rg3 (20 or 40 mg/kg) for 3 weeks markedly inhibited the growth of xenografts in nude mice. Our results demonstrated that 20(S)-Rg3 potently inhibited growth and survival of GBC cells both in vitro and in vivo. 20(S)-Rg3 attenuated GBC growth probably via activation of the p53 pathway, and subsequent induction of cellular senescence and mitochondrial-dependent apoptosis. Therefore, 20(S)-Rg3 may be a potential chemotherapeutic agent for GBC therapy.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular senescence and its effector programs.

          Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized. These studies suggest that senescence is a collective phenotype of these multiple effectors, and their intensity and combination can be different depending on triggers and cell types, conferring a complex and diverse nature to senescence. Series of studies on senescence-associated secretory phenotype (SASP) in particular have revealed various layers of functionality of senescent cells in vivo. Here we discuss some key features of senescence effectors and attempt to functionally link them when it is possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis.

            Inactivation of the p53 tumor suppressor is a frequent event in tumorigenesis. In most cases, the p53 gene is mutated, giving rise to a stable mutant protein whose accumulation is regarded as a hallmark of cancer cells. Mutant p53 proteins not only lose their tumor suppressive activities but often gain additional oncogenic functions that endow cells with growth and survival advantages. Interestingly, mutations in the p53 gene were shown to occur at different phases of the multistep process of malignant transformation, thus contributing differentially to tumor initiation, promotion, aggressiveness, and metastasis. Here, the authors review the different studies on the involvement of p53 inactivation at various stages of tumorigenesis and highlight the specific contribution of p53 mutations at each phase of cancer progression.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Caspases: intracellular signaling by proteolysis.

               V M Dixit,  G Salvesen (1997)
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                10 August 2015
                : 9
                : 3969-3987
                Affiliations
                Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Yingbin Liu; Ping Dong, Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People’s Republic of China, Email liuybphd@ 123456126.com ; dongping1050@ 123456163.com
                [*]

                These authors contributed equally to this work

                [#]

                These authors jointly directed this work

                Article
                dddt-9-3969
                10.2147/DDDT.S84527
                4539091
                © 2015 Zhang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article