0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure–Function Analysis in Macular Drusen With Mesopic and Scotopic Microperimetry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate the structure–function relationship in eyes with drusen with mesopic and scotopic microperimetry.

          Methods

          We analyzed structural and functional data from 43 eyes with drusen. Functional data were acquired with mesopic and scotopic two-color (red and cyan) microperimetry. Normative values were calculated using data from 56 healthy eyes. Structural measurements were green autofluorescence and dense macular optical coherence tomography scans. The latter were used to calculate the retinal pigment epithelium elevation (RPE-E) and the photoreceptor reflectivity ratio (PRR). The pointwise structure–function relationship was measured with linear mixed models having the log-transformed structural parameters as predictors and the sensitivity loss (SL, deviation from normal) as the response variable.

          Results

          In the univariable analysis, the structural predictors were all significantly correlated ( P < 0.05) with the SL in the mesopic and scotopic tests. In a multivariable model, mesopic microperimetry yielded the best structure–function relationship. All predictors were significant ( P < 0.05), but the predictive power was weak (best R 2 = 0.09). The relationship was improved when analyzing locations with abnormal RPE-E (best R 2 = 0.18).

          Conclusions

          Mesopic microperimetry shows better structure–function relationship compared to scotopic microperimetry; the relationship is weak, likely due to the early functional damage and the small number of tested locations affected by drusen. The relationship is stronger when locations with drusen are isolated for the mesopic and scotopic cyan test.

          Translational Relevance

          These results could be useful to devise integrated structure–function methods to detect disease progression in intermediate age-related macular degeneration.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found

          Clinically applicable deep learning for diagnosis and referral in retinal disease

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical classification of age-related macular degeneration.

            To develop a clinical classification system for age-related macular degeneration (AMD). Evidence-based investigation, using a modified Delphi process. Twenty-six AMD experts, 1 neuro-ophthalmologist, 2 committee chairmen, and 1 methodologist. Each committee member completed an online assessment of statements summarizing current AMD classification criteria, indicating agreement or disagreement with each statement on a 9-step scale. The group met, reviewed the survey results, discussed the important components of a clinical classification system, and defined new data analyses needed to refine a classification system. After the meeting, additional data analyses from large studies were provided to the committee to provide risk estimates related to the presence of various AMD lesions. Delphi review of the 9-item set of statements resulting from the meeting. Consensus was achieved in generating a basic clinical classification system based on fundus lesions assessed within 2 disc diameters of the fovea in persons older than 55 years. The committee agreed that a single term, age-related macular degeneration, should be used for the disease. Persons with no visible drusen or pigmentary abnormalities should be considered to have no signs of AMD. Persons with small drusen (<63 μm), also termed drupelets, should be considered to have normal aging changes with no clinically relevant increased risk of late AMD developing. Persons with medium drusen (≥ 63-<125 μm), but without pigmentary abnormalities thought to be related to AMD, should be considered to have early AMD. Persons with large drusen or with pigmentary abnormalities associated with at least medium drusen should be considered to have intermediate AMD. Persons with lesions associated with neovascular AMD or geographic atrophy should be considered to have late AMD. Five-year risks of progressing to late AMD are estimated to increase approximately 100 fold, ranging from a 0.5% 5-year risk for normal aging changes to a 50% risk for the highest intermediate AMD risk group. The proposed basic clinical classification scale seems to be of value in predicting the risk of late AMD. Incorporating consistent nomenclature into the practice patterns of all eye care providers may improve communication and patient care. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human photoreceptor topography.

              We have measured the spatial density of cones and rods in eight whole-mounted human retinas, obtained from seven individuals between 27 and 44 years of age, and constructed maps of photoreceptor density and between-individual variability. The average human retina contains 4.6 million cones (4.08-5.29 million). Peak foveal cone density averages 199,000 cones/mm2 and is highly variable between individuals (100,000-324,000 cones/mm2). The point of highest density may be found in an area as large as 0.032 deg2. Cone density falls steeply with increasing eccentricity and is an order of magnitude lower 1 mm away from the foveal center. Superimposed on this gradient is a streak of high cone density along the horizontal meridian. At equivalent eccentricities, cone density is 40-45% higher in nasal compared to temporal retina and slightly higher in midperipheral inferior compared to superior retina. Cone density also increases slightly in far nasal retina. The average human retina contains 92 million rods (77.9-107.3 million). In the fovea, the average horizontal diameter of the rod-free zone is 0.350 mm (1.25 degrees). Foveal rod density increases most rapidly superiorly and least rapidly nasally. The highest rod densities are located along an elliptical ring at the eccentricity of the optic disk and extending into nasal retina with the point of highest density typically in superior retina (5/6 eyes). Rod densities decrease by 15-25% where the ring crosses the horizontal meridian. Rod density declines slowly from the rod ring to the far periphery and is highest in nasal and superior retina. Individual variability in photoreceptor density differs with retinal region and is similar for both cones and rods. Variability is highest near the fovea, reaches a minimum in the midperiphery, and then increases with eccentricity to the ora serrata. The total number of foveal cones is similar for eyes with widely varying peak cone density, consistent with the idea that the variability reflects differences in the lateral migration of photoreceptors during development. Two fellow eyes had cone and rod numbers within 8% and similar but not identical photoreceptor topography.
                Bookmark

                Author and article information

                Journal
                Transl Vis Sci Technol
                Transl Vis Sci Technol
                tvst
                TVST
                Translational Vision Science & Technology
                The Association for Research in Vision and Ophthalmology
                2164-2591
                28 December 2020
                December 2020
                : 9
                : 13
                : 43
                Affiliations
                [1 ]City, University of London—Optometry and Visual Sciences, London, UK
                [2 ]NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
                [3 ]Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
                Author notes
                Correspondence: David P. Crabb, City, University of London, Northampton Square, London, EC1V 0HB, UK. e-mail: david.crabb.1@ 123456city.ac.uk
                Article
                TVST-20-2661
                10.1167/tvst.9.13.43
                7774115
                faad1cc8-9205-469c-9ddf-cb767451802c
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 18 October 2020
                : 26 May 2020
                Page count
                Pages: 14
                Categories
                Article
                Article

                drusen,structure–function,microperimetry,optical coherence tomography,age-related macular degeneration

                Comments

                Comment on this article