16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of a novel phosphorylation site in adipose triglyceride lipase as a regulator of lipid droplet localization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triacylglycerol (TG) hydrolysis, has long been known to be a phosphoprotein. However, the potential phosphorylation events that are involved in the regulation of ATGL function remain incompletely defined. Here, using a combinatorial proteomics approach, we obtained evidence that at least eight different sites of ATGL can be phosphorylated in adipocytes. Among them, Thr 372 resides within the hydrophobic region known to mediate lipid droplet (LD) targeting. Although it had no impact on the TG hydrolase activity, substitution of phosphorylation-mimic Asp for Thr 372 eliminated LD localization and LD-degrading capacity of ATGL expressed in HeLa cells. In contrast, mutation of Thr 372 to Ala gave a protein that bound LDs and functioned the same as the wild-type protein. In nonstimulated adipocytes, the Asp mutation led to decreased LD association and basal lipolytic activity of ATGL, whereas the Ala mutation produced opposite effects. Moreover, the LD translocation of ATGL upon β-adrenergic stimulation was also compromised by the Asp mutation. In accord with these findings, the Ala mutation promoted and the Asp mutation attenuated the capacity of ATGL to mediate lipolysis in adipocytes under both basal and stimulated conditions. Collectively, these studies identified Thr 372 as a novel phosphorylation site that may play a critical role in determining subcellular distribution as well as lipolytic action of ATGL.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.

          Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A probability-based approach for high-throughput protein phosphorylation analysis and site localization.

            Data analysis and interpretation remain major logistical challenges when attempting to identify large numbers of protein phosphorylation sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Supplementary Figure 1 online). In this report we address challenges that are often only addressable by laborious manual validation, including data set error, data set sensitivity and phosphorylation site localization. We provide a large-scale phosphorylation data set with a measured error rate as determined by the target-decoy approach, we demonstrate an approach to maximize data set sensitivity by efficiently distracting incorrect peptide spectral matches (PSMs), and we present a probability-based score, the Ascore, that measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra. We applied our methods in a fully automated fashion to nocodazole-arrested HeLa cell lysate where we identified 1,761 nonredundant phosphorylation sites from 491 proteins with a peptide false-positive rate of 1.3%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling

              Lipolysis is defined as the catabolism of triacylglycerols stored in cellular lipid droplets. Recent discoveries of essential lipolytic enzymes and characterization of numerous regulatory proteins and mechanisms have fundamentally changed our perception of lipolysis and its impact on cellular metabolism. New findings that lipolytic products and intermediates participate in cellular signaling processes and that “lipolytic signaling” is particularly important in many nonadipose tissues unveil a previously underappreciated aspect of lipolysis, which may be relevant for human disease.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Endocrinology and Metabolism
                American Journal of Physiology-Endocrinology and Metabolism
                American Physiological Society
                0193-1849
                1522-1555
                June 15 2014
                June 15 2014
                : 306
                : 12
                : E1449-E1459
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona;
                [2 ]HEALth Program, Mayo Clinic, Scottsdale, Arizona;
                [3 ]Mayo Graduate School, Rochester, Minnesota; and
                [4 ]Division of Endocrinology, Mayo Clinic, Scottsdale, Arizona;
                [5 ]Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
                Article
                10.1152/ajpendo.00663.2013
                24801391
                fae0ad27-0c9e-41d9-a55b-8a9d194c0b54
                © 2014
                History

                Comments

                Comment on this article