10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amorphous titanium-oxide supercapacitors

      research-article
      a , 1 , 1 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electric capacitance of an amorphous TiO 2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm 2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO 2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Article: not found

          The electrical double layer and the theory of electrocapillarity.

          D GRAHAME (1947)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Superior electric storage on an amorphous perfluorinated polymer surface

            Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons

              Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                21 October 2016
                2016
                : 6
                : 35870
                Affiliations
                [1 ]New Industry Creation Hatchery Center, Tohoku University , Sendai, 980-8579 Japan
                Author notes
                Article
                srep35870
                10.1038/srep35870
                5073320
                27767103
                fafaecba-9565-4609-b016-bb377a034c3d
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 June 2016
                : 07 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article