16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lamotrigine in the Prevention of Migraine With Aura: A Narrative Review

      1 , 1 , 2
      Headache: The Journal of Head and Face Pain
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of Migraine: A Disorder of Sensory Processing.

          Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study.

            Many women of childbearing potential take antiepileptic drugs, but the cognitive effects of fetal exposure are uncertain. We aimed to assess effects of commonly used antiepileptic drugs on cognitive outcomes in children up to 6 years of age. In this prospective, observational, assessor-masked, multicentre study, we enrolled pregnant women with epilepsy on antiepileptic drug monotherapy (carbamazepine, lamotrigine, phenytoin, or valproate) between October, 1999, and February, 2004, at 25 epilepsy centres in the UK and the USA. Our primary outcome was intelligence quotient (IQ) at 6 years of age (age-6 IQ) in all children, assessed with linear regression adjusted for maternal IQ, antiepileptic drug type, standardised dose, gestational birth age, and use of periconceptional folate. We also assessed multiple cognitive domains and compared findings with outcomes at younger ages. This study is registered with ClinicalTrials.gov, number NCT00021866. We included 305 mothers and 311 children (six twin pairs) in the primary analysis. 224 children completed 6 years of follow-up (6-year-completer sample). Multivariate analysis of all children showed that age-6 IQ was lower after exposure to valproate (mean 97, 95% CI 94-101) than to carbamazepine (105, 102-108; p=0·0015), lamotrigine (108, 105-110; p=0·0003), or phenytoin (108, 104-112; p=0·0006). Children exposed to valproate did poorly on measures of verbal and memory abilities compared with those exposed to the other antiepileptic drugs and on non-verbal and executive functions compared with lamotrigine (but not carbamazepine or phenytoin). High doses of valproate were negatively associated with IQ (r=-0·56, p<0·0001), verbal ability (r=-0·40, p=0·0045), non-verbal ability (r=-0·42, p=0·0028), memory (r=-0·30, p=0·0434), and executive function (r=-0·42, p=0·0004), but other antiepileptic drugs were not. Age-6 IQ correlated with IQs at younger ages, and IQ improved with age for infants exposed to any antiepileptic drug. Compared with a normative sample (173 [93%] of 187 children), right-handedness was less frequent in children in our study overall (185 [86%] of 215; p=0·0404) and in the lamotrigine (59 [83%] of 71; p=0·0287) and valproate (38 [79%] of 40; p=0·0089) groups. Verbal abilities were worse than non-verbal abilities in children in our study overall and in the lamotrigine and valproate groups. Mean IQs were higher in children exposed to periconceptional folate (108, 95% CI 106-111) than they were in unexposed children (101, 98-104; p=0·0009). Fetal valproate exposure has dose-dependent associations with reduced cognitive abilities across a range of domains at 6 years of age. Reduced right-handedness and verbal (vs non-verbal) abilities might be attributable to changes in cerebral lateralisation induced by exposure to antiepileptic drugs. The positive association of periconceptional folate with IQ is consistent with other recent studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical spreading depression and migraine.

              Cortical spreading depression (CSD), a slowly propagated wave of depolarization followed by suppression of brain activity, is a remarkably complex event that involves dramatic changes in neural and vascular function. Since its original description in the 1940s, CSD has been hypothesized to be the underlying mechanism of the migraine aura. Substantial evidence from animal models provides indirect support for this hypothesis, and studies showing that CSD is common in humans with brain injury clearly demonstrate that the phenomenon can occur in the human brain. Considerable uncertainty about the role of CSD in migraine remains, however, and key questions about how this event is initiated, how it spreads, and how it might cause migraine symptoms remain unanswered. This Review summarizes current concepts of CSD and its potential roles in migraine, and addresses ongoing studies aimed at a clearer understanding of this fundamental brain phenomenon.
                Bookmark

                Author and article information

                Contributors
                Journal
                Headache: The Journal of Head and Face Pain
                Headache: The Journal of Head and Face Pain
                Wiley
                0017-8748
                1526-4610
                August 24 2019
                September 2019
                August 29 2019
                September 2019
                : 59
                : 8
                : 1187-1197
                Affiliations
                [1 ]Neurology Department, DHU Neuro‐Vasc Hopital Lariboisière Paris France
                [2 ]INSERM U1161 Université Denis Diderot Paris France
                Article
                10.1111/head.13615
                fb3899d5-c543-4441-b46a-4826d58cc02b
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article