77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin C ( L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit ( Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3–16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP- L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3′,5′-epimerase and GDP- L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP- L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP- L-galactose guanyltransferase and GDP-mannose-3′,5′-epimerase genes were co-expressed. These studies show the importance of GDP- L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants

          Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biosynthetic pathway of vitamin C in higher plants.

            Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, but humans, and a few other animal species, have lost the capacity to synthesize it. Plant-derived ascorbate is thus the major source of vitamin C in the human diet. Although the biosynthetic pathway of L-ascorbic acid in animals is well understood, the plant pathway has remained unknown-one of the few primary plant metabolic pathways for which this is the case. L-ascorbate is abundant in plants (found at concentrations of 1-5 mM in leaves and 25 mM in chloroplasts) and may have roles in photosynthesis and transmembrane electron transport. We found that D-mannose and L-galactose are efficient precursors for ascorbate synthesis and are interconverted by GDP-D-mannose-3,5-epimerase. We have identified an enzyme in pea and Arabidopsis thaliana, L-galactose dehydrogenase, that catalyses oxidation of L-galactose to L-galactono-1,4-lactone. We propose an ascorbate biosynthesis pathway involving GDP-D-mannose, GDP-L-galactose, L-galactose and L-galactono-1,4-lactone, and have synthesized ascorbate from GDP-D-mannose by way of these intermediates in vitro. The definition of this biosynthetic pathway should allow engineering of plants for increased ascorbate production, thus increasing their nutritional value and stress tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase.

              L-Ascorbic acid (vitamin C) in fruits and vegetables is an essential component of human nutrition. Surprisingly, only limited information is available about the pathway(s) leading to its biosynthesis in plants. Here, we report the isolation and characterization of GalUR, a gene from strawberry that encodes an NADPH-dependent D-galacturonate reductase. We provide evidence that the biosynthesis of L-ascorbic acid in strawberry fruit occurs through D-galacturonic acid, a principal component of cell wall pectins. Expression of GalUR correlated with changing ascorbic acid content in strawberry fruit during ripening and with variations in ascorbic acid content in fruit of different species of the genus Fragaria. Reduced pectin solubilization in cell walls of transgenic strawberry fruit with decreased expression of an endogenous pectate lyase gene resulted in lower ascorbic acid content. Overexpression of GalUR in Arabidopsis thaliana enhanced vitamin C content two- to threefold, demonstrating the feasibility of engineering increased vitamin C levels in plants using this gene.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                March 2009
                6 January 2009
                6 January 2009
                : 60
                : 3
                : 765-778
                Affiliations
                Plant and Food Research, PB 92169, Auckland, New Zealand
                Author notes
                []To whom correspondence should be addressed: E-mail: wlaing@ 123456hortresearch.co.nz
                [*]

                Present address Scion, PB 3020, Rotorua 3046, New Zealand.

                Article
                10.1093/jxb/ern327
                2652059
                19129165
                fb61ba02-7273-4ce8-b267-7134a2f0381d
                © 2009 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 26 September 2008
                : 2 November 2008
                : 19 November 2008
                Categories
                Research Papers

                Plant science & Botany
                gdp-l-galactose guanyltransferase,gdp mannose epimerase,ascorbate biosynthesis,gene expression,vitamin c,over-expression

                Comments

                Comment on this article