3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Integrated metabolomics and transcriptomics reveal the adaptive responses of Salmonella enterica serovar Typhimurium to thyme and cinnamon oils

      , , ,
      Food Research International
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          GOplot: an R package for visually combining expression data with functional analysis.

          Despite the plethora of methods available for the functional analysis of omics data, obtaining comprehensive-yet detailed understanding of the results remains challenging. This is mainly due to the lack of publicly available tools for the visualization of this type of information. Here we present an R package called GOplot, based on ggplot2, for enhanced graphical representation. Our package takes the output of any general enrichment analysis and generates plots at different levels of detail: from a general overview to identify the most enriched categories (bar plot, bubble plot) to a more detailed view displaying different types of information for molecules in a given set of categories (circle plot, chord plot, cluster plot). The package provides a deeper insight into omics data and allows scientists to generate insightful plots with only a few lines of code to easily communicate the findings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components

            Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus

                Bookmark

                Author and article information

                Journal
                Food Research International
                Food Research International
                Elsevier BV
                09639969
                July 2022
                July 2022
                : 157
                : 111241
                Article
                10.1016/j.foodres.2022.111241
                fb93e347-72de-4e5c-bc25-cfa6c612e41a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article