26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective(s):

          The present study was undertaken to determine the effects of acute exposure to malathion on oxidative stress and cytotoxic potential of anticholinesterase insecticide, malathion in reproductive toxicology of adolescent male mice.

          Materials and Methods:

          Thirty two adolescent male mice at pubertal age were treated with 500 mg/kg body weight (BW) of malathion for three days. After exposure, biochemical markers and sperm analysis were evaluated and finally histological modifications of testis and sperm were assessed.

          Results:

          Our data showed that treatment of male mice with malathion (500 mg/kg, BW) could lead to oxidative stress. Induced oxidative stress status can be assessed due to increased malondialdhyde (MDA) content, decreased thiol group content, as well as increased antioxidant enzyme activities. On the other hand, exposure to malathion at the pubertal age led to alteration of semen parameters; sperm production and percentage of motile sperm were decreased in the treated groups compared to the control. Furthermore, exposure of male mice to malathion led to a decrease of testosterone level, inhibition of acetylcholinesterase, and decrease of the reproductive performance of male mice after three days of treatment at the age of puberty.

          Conclusion:

          The importance to carry out in vitro reproductive toxicology assays lies on the need of knowing the alterations these insecticides may cause at cellular level, since they are endocrine disruptors that interfere with reproductive functions.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Organophosphorus pesticides: do they all have the same mechanism of toxicity?

          C. Pope (2015)
          Organophosphorus (OP) pesticides are used extensively to control agricultural, household and structural pests. These pesticides constitute a diverse group of chemical structures exhibiting a wide range of physicochemical properties, with their primary toxicological action arising from inhibition of the enzyme acetylcholinesterase (AChE, EC 3.1.1.7). Historically, risk characterizations for these toxicants have been based on hazard and exposure data pertaining to individual chemicals. The Food Quality Protection Act of 1996 now requires, however, that combined risk assessments be performed with pesticides having a common mechanism of toxicity. It is therefore critical to consider whether OP pesticides all exert toxicity through a common mechanism. This brief review evaluates the comparative toxicity of the 38 OP AChE inhibitors currently registered for use as pesticides in the United States and examines the data which suggest that some OP pesticides have toxicologically relevant sites of action in addition to AChE. It is concluded that all OP anticholinesterases potentially have a mechanism of toxicity in common, that is, phosphorylation of AChE causing accumulation of acetylcholine, overstimulation of cholinergic receptors, and consequent clinical signs of cholinergic toxicity. Additional macromolecular targets for some OP pesticides, however, may alter the cascade of events following AChE phosphorylation and thereby modify that common mechanism. Furthermore, other macromolecular targets of some OP pesticides appear capable of altering noncholinergic neurochemical processes. These additional actions may contribute to qualitative and quantitative differences in toxicity sometimes noted in the presence of similar levels of AChE inhibition induced by different OP pesticides. Further investigation of these additional sites of action may allow subclassification and influence the decision to perform combined risk assessments on this class of pesticides based on common mechanism of toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E.

            Sexually mature male Wistar rats (weighing 300-320 g and each group 6 animals) were given malathion (27 mg/kg; 1/50 of the LD(50) for an oral dose) and/or vitamin C (200mg/kg)+vitamin E (200mg/kg) daily via gavage for 4 weeks. The sperm counts, sperm motility, sperm morphology, FSH, LH, and testosterone levels, and histopathological changes in the testes of these rats, were investigated at the end of the 4th week. By the end of 4th week, rats given malathion alone, or in combination with vitamins C and E, had significantly lower sperm counts and sperm motility, and significantly higher abnormal sperm numbers, than the untreated control rats. The rats given malathion alone or in combination with vitamins also had significantly lower plasma FSH, LH and testosterone levels than the control rats. Co-treatment of malathion-exposed rats with vitamins E and C had a protective effect on sperm counts, sperm motility and abnormal sperm numbers, but not on plasma FSH, LH and testosterone levels. Light microscopic investigations revealed that 4 weeks of malathion exposure was associated with necrosis and edema in the seminiferous tubules and interstitial tissues. Degenerative changes in the seminiferous tubules were also observed in the rats which received malathion and supplemented with vitamins C and E, but milder histopathological changes were observed in the interstitial tissues. Thus, it appears that vitamins C and E ameliorate malathion testicular toxicity but are not completely protective.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The importance of porcine sperm parameters on fertility in vivo.

              It would be desirable to use semen parameters to predict the in vivo fertilizing capacity of a particular ejaculate. In animal production, an ejaculate is divided into multiple doses for artificial insemination (AI); therefore, it would be economically beneficial to know the functional quality (i.e., fertility) of the semen before it is inseminated. To identify a predictive assay of the fertilizing capacity of a porcine ejaculate, we performed 4 rapid assays of sperm quality (motility, viability, physiological status as assessed by chlortetracycline fluorescence, and ATP content) on samples from 9 ejaculates, before and after a thermal stress test (42.5 degrees C, 45 min). These parameters were subsequently correlated with in vivo fertility resulting from AI with 2 sperm doses, 3 x 10(9) or 0.3 x 10(9) motile cells in 70 mL (optimal or suboptimal sperm number per insemination, respectively) from these same ejaculates. No parameter was correlated to the fertility rates obtained after inseminating with the optimal semen doses, either before or after the thermal stress test (P > 0.05). However, with respect to the animals inseminated with the suboptimal semen dose, sperm motility (the percentage of motile spermatozoa as assessed visually by microscopy) prior to thermal stress was well-correlated to fertility rates (r = 0.783, P = 0.01). The percentage of spermatozoa displaying the chlortetracycline Pattern AR (acrosome reaction) was also statistically related to fertility (r = 0.05, P = 0.04), but the biological importance of this relationship is questionable given the small variation among ejaculates (range: 0 to 2%). No other sperm parameter was significantly related to fertility rates in this group (P > 0.05). These data, therefore, indicate that sperm motility is a useful indicator of sperm fertilizing capacity in vivo. Moreover, to identify a predictor of semen fertility it is critical that the number of spermatozoa used during insemination is sufficiently low to detect differences in sperm fertilizing efficiency.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                IJBMS
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences
                2008-3866
                2008-3874
                July 2014
                : 17
                : 7
                : 522-530
                Affiliations
                [1 ]Laboratory of Animal Physiology, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
                Author notes
                [* ] Corresponding author: Selmi Slimen. Laboratory of Animal Physiology, Faculty of Sciences, Tunis, Tunisia. Tel: +21626422454; Fax: +21671885480; email: slimen.selmi@ 123456gmail.com
                Article
                IJBMS-17-522
                4242923
                25429344
                fba1e4f2-e6e9-4442-b168-cc21d495fde9
                © Iranian Journal of Basic Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 September 2013
                : 2 May 2014
                Categories
                Original Article

                acetylcholinestrase,malathion,oxidative stress,testosterone

                Comments

                Comment on this article