51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indoxyl Sulfate-Induced Activation of (Pro)renin Receptor Promotes Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). (Pro)renin receptor (PRR) is activated in the kidney of CKD. The present study aimed to determine the role of indoxyl sulfate (IS), a uremic toxin, in PRR activation in rat aorta and human aortic smooth muscle cells (HASMCs). We examined the expression of PRR and renin/prorenin in rat aorta using immunohistochemistry. Both CKD rats and IS-administrated rats showed elevated expression of PRR and renin/prorenin in aorta compared with normal rats. IS upregulated the expression of PRR and prorenin in HASMCs. N-acetylcysteine, an antioxidant, and diphenyleneiodonium, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase, suppressed IS-induced expression of PRR and prorenin in HASMCs. Knock down of organic anion transporter 3 (OAT3), aryl hydrocarbon receptor (AhR) and nuclear factor-κB p65 (NF-κB p65) with small interfering RNAs inhibited IS-induced expression of PRR and prorenin in HASMCs. Knock down of PRR inhibited cell proliferation and tissue factor expression induced by not only prorenin but also IS in HASMCs.

          Conclusion

          IS stimulates aortic expression of PRR and renin/prorenin through OAT3-mediated uptake, production of reactive oxygen species, and activation of AhR and NF-κB p65 in vascular smooth muscle cells. IS-induced activation of PRR promotes cell proliferation and tissue factor expression in vascular smooth muscle cells.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Clinical epidemiology of cardiovascular disease in chronic renal disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

            As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor.

              The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in the regulation of multiple cellular pathways, such as xenobiotic metabolism and Th17 cell differentiation. Identification of key physiologically relevant ligands that regulate AHR function remains to be accomplished. Screening of indole metabolites has identified indoxyl 3-sulfate (I3S) as a potent endogenous ligand that selectively activates the human AHR at nanomolar concentrations in primary human hepatocytes, regulating transcription of multiple genes, including CYP1A1, CYP1A2, CYP1B1, UGT1A1, UGT1A6, IL6, and SAA1. Furthermore, I3S exhibits an approximately 500-fold greater potency in terms of transcriptional activation of the human AHR relative to the mouse AHR in cell lines. Structure-function studies reveal that the sulfate group is an important determinant for efficient AHR activation. This is the first phase II enzymatic product identified that can significantly activate the AHR, and ligand competition binding assays indicate that I3S is a direct AHR ligand. I3S failed to activate either CAR or PXR. The physiological importance of I3S lies in the fact that it is a key uremic toxin that accumulates to high micromolar concentrations in kidney dialysis patients, but its mechanism of action is unknown. I3S represents the first identified relatively high potency endogenous AHR ligand that plays a key role in human disease progression. These studies provide evidence that the production of I3S can lead to AHR activation and altered drug metabolism. Our results also suggest that prolonged activation of the AHR by I3S may contribute to toxicity observed in kidney dialysis patients and thus represent a possible therapeutic target.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                24 October 2014
                : 9
                : 10
                : e109268
                Affiliations
                [1 ]Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [2 ]Biomedical Research Laboratories, Kureha Co., Tokyo, Japan
                [3 ]Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
                [4 ]Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
                [5 ]Faculty of Health and Nutrition, Shubun University, Aichi, Japan
                Medical University Innsbruck, Austria
                Author notes

                Competing Interests: FN is employed by Kureha. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. The other authors declare no competing interests.

                Conceived and designed the experiments: TN MY. Performed the experiments: MY SS SA YA HN FN. Analyzed the data: TN MY. Contributed reagents/materials/analysis tools: TN. Wrote the paper: TN MY KT TM.

                Article
                PONE-D-14-17519
                10.1371/journal.pone.0109268
                4208748
                25343458
                fc03f923-6145-40d2-9546-908d09b998d2
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 April 2014
                : 5 September 2014
                Page count
                Pages: 10
                Funding
                This work was supported by the research grant from Aichi Kidney Foundation, and a grant from Kureha Corporation, Japan. The funder provided support in the form of salaries for FN, but did not have additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of these authors are articulated in the ‘author contributions’ section.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Medicine and Health Sciences
                Cardiology
                Cardiovascular Diseases
                Nephrology
                Chronic Kidney Disease
                Renal Failure
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article