6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of myosin V binding to brain vesicles.

      The Journal of Biological Chemistry
      Adenosine Triphosphate, metabolism, Animals, Brain, embryology, Chick Embryo, Cyclic AMP, Golgi Apparatus, Microscopy, Electron, Myosins, ultrastructure, Phosphates, Protein Binding, Protein Isoforms, Sodium Chloride

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myosin II and V are important for the generation and segregation of subcellular compartments. We observed that vesicular myosin II and V were associated with the protein scaffolding of a common subset of vesicles by density sedimentation, electron microscopy, and immunofluorescence. Solubilization of either myosin II or V was caused by polyphosphates with the following efficacy at 10 mM: for myosin II ATP-Mg(2+) = ATP = AMP-PNP (5'-adenylyl imidodiphosphate) > pyrophosphate = tripolyphosphate > tetrapolyphosphate = ADP > cAMP = Mg(2+); and for myosin V pyrophosphate = tripolyphosphate > ATP-Mg(2+) = ATP = AMP-PNP > ADP = tetrapolyphosphate > cAMP = Mg(2+). Consequently, we suggest solubilization was not an effect of phosphorylation, hydrolysis, or disassociation of myosin from actin filaments. Scatchard analysis of myosin V binding to stripped dense vesicles showed saturable binding with a K(m) of 10 nM. Analysis of native vesicles indicates that these sites are fully occupied. Together, these data show there are over 100 myosin Vs/vesicle (100-nm radius). We propose that polyphosphate anions bind to myosin II and V and induce a conformational change that disrupts binding to a receptor.

          Related collections

          Author and article information

          Comments

          Comment on this article