1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protein-protein interaction of RdRp with its co-factor NSP8 and NSP7 to decipher the interface hotspot residues for drug targeting: A comparison between SARS-CoV-2 and SARS-CoV

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study we explored the molecular mechanism of RdRp (Non-Structural Protein, NSP12) interaction with its co-factors NSP7 and NSP8 which is the main toolbox for RNA replication and transcription of SARS-CoV-2 and SARS-CoV. The replication complex is a heterotetramer consists of one NSP12, one NSP7 and two NSP8. Extensive molecular dynamics (MD) simulations were applied on both the heterotetramer complexes to generate the conformations and were used to estimate the MMPBSA binding free energy (BFE) and per-residue energy decomposition of NSP12-NSP8 and NSP12-NSP7 and NSP7-NSP8 complexes. The BFE of SARS-CoV-2 heterotetramer complex with its corresponding partner protein was significantly higher as compared to SARS-CoV. Interface hotspot residues were predicted using different methods implemented in KFC (Knowledge-based FADA and Contracts), HotRegion and Robetta web servers. Per-residue energy decomposition analysis showed that the predicted interface hotspot residues contribute more energy towards the formation of complexes and most of the predicted hotspot residues are clustered together. However, there is a slight difference in the residue-wise energy contribution in the interface NSPs on heterotetramer viral replication complex of both coronaviruses. While the overall replication complex of SARS-CoV-2 was found to be slightly flexible as compared to SARS-CoV. This difference in terms of structural flexibility/stability and energetic characteristics of interface residues including hotspots at PPI interface in the viral replication complexes may be the reason of higher rate of RNA replication of SARS-CoV-2 as compared to SARS-CoV. Overall, the interaction profile at PPI interface such as, interface area, hotspot residues, nature of bonds and energies between NSPs, may provide valuable insights in designing of small molecules or peptide/peptidomimetic ligands which can fit into the PPI interface to disrupt the interaction.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UCSF Chimera--a visualization system for exploratory research and analysis.

            The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

                Bookmark

                Author and article information

                Journal
                J Mol Struct
                J Mol Struct
                Journal of Molecular Structure
                Elsevier B.V.
                0022-2860
                1872-8014
                8 February 2022
                8 February 2022
                : 132602
                Affiliations
                [1 ]Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam, India
                [2 ]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
                Author notes
                [* ]Corresponding author.
                Article
                S0022-2860(22)00275-7 132602
                10.1016/j.molstruc.2022.132602
                8824464
                35153334
                fc6678eb-90fd-47fb-8d00-8d233abfe62a
                © 2022 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 18 December 2021
                : 3 February 2022
                : 7 February 2022
                Categories
                Article

                protein-protein interaction,hotspot residues,interacting interface,binding energy,per-residue energy decomposition,md simulation

                Comments

                Comment on this article