1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of dietary tall oil fatty acids and hydrolysed yeast in SNP2-positive and SNP2-negative piglets challenged with F4 enterotoxigenic Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reduction of post-weaning diarrhoea caused by ETEC is a principal objective in pig farming in terms of welfare benefits. This study determined the effects of genetic susceptibility and dietary strategies targeting inflammation and fimbriae adherence on F4-ETEC shedding and diarrhoea in weaned piglets in an experimental challenge model. A DNA marker test targeting single nucleotide polymorphism 2 (SNP2) identified piglets as heterozygous (SNP2+, susceptible) or homozygous (SNP2-, resistant) to developing F4ac-ETEC diarrhoea. A total of 50 piglets, 25 SNP2+ and 25 SNP2-, were weaned at 30 days of age and equally distributed to different treatments (n = 10): Positive control (PC): piglets fed with a negative control diet and provided with colistin via drinking water; Negative control (NC): piglets fed with a negative control diet; Tall oil fatty acids (TOFA): piglets fed with a negative control diet + 1.0 g TOFA/kg feed; Yeast hydrolysate (YH): piglets fed with a negative control diet + 1.5 g YH/kg feed derived from Saccharomyces cerevisiae; and Combination (COM): piglets fed with a negative control diet + 1.0 g TOFA and 1.5 g YH/kg feed. On day 10 post-weaning, all piglets were infected with F4-ETEC by oral administration. Piglets fed with PC, TOFA, YH or COM had a lower faecal shedding of F4-ETEC than NC piglets ( P < 0.001), which was also shorter in duration for PC and TOFA piglets than for NC piglets ( P < 0.001). Piglets in PC, TOFA, YH and COM had a shorter diarrhoea duration versus NC when classified as SNP2+ ( P = 0.02). Furthermore, PC, TOFA and YH piglets grew more than NC and COM piglets in the initial post-inoculation period ( P < 0.001). In addition, the level of faecal F4-ETEC shedding and the percentage of pigs that developed F4-ETEC diarrhoea (72 vs. 32%, P < 0.01) following infection were higher, and the duration of F4-ETEC diarrhoea longer (2.6 vs. 0.6 days, P < 0.001), in SNP2+ piglets than in SNP2- piglets, and led to reduced growth performance ( P = 0.03). In conclusion, piglets fed with TOFA, YH or their combination, irrespective of their SNP2 status, are more resilient to F4-ETEC infection. Moreover, SNP2+ piglets show a higher level of F4-ETEC shedding and diarrhoea prevalence than SNP2- piglets, confirming an association between SNP2 and F4ac-ETEC susceptibility.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies.

          Escherichia coli is one of the most important causes of postweaning diarrhea in pigs. This diarrhea is responsible for economic losses due to mortality, morbidity, decreased growth rate, and cost of medication. The E. coli causing postweaning diarrhea mostly carry the F4 (K88) or the F18 adhesin. Recently, an increase in incidence of outbreaks of severe E. coli-associated diarrhea has been observed worldwide. The factors contributing to the increased number of outbreaks of this more severe form of E. coli-associated diarrhea are not yet fully understood. These could include the emergence of more virulent E. coli clones, such as the 0149:LT:STa:STb:EAST1:F4ac, or recent changes in the management of pigs. Development of multiple bacterial resistance to a wide range of commonly used antibiotics and a recent increase in the prevalence and severity of the postweaning syndromes will necessitate the use of alternative measures for their control. New vaccination strategies include the oral immunization of piglets with live avirulent E. coli strains carrying the fimbrial adhesins or oral administration of purified F4 (K88) fimbriae. Other approaches to control this disease include supplementation of the feed with egg yolk antibodies from chickens immunized with F4 or F18 adhesins, breeding of F18- and F4-resistant animals, supplementation with zinc and/ or spray-dried plasma, dietary acidification, phage therapy, or the use of probiotics. To date, not a single strategy has proved to be totally effective and it is probable that the most successful approach on a particular farm will involve a combination of diet modification and other preventive measures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs.

            A total of 112 Escherichia coli O149:K91 strains isolated from pigs with diarrhea in Quebec, Canada, between 1978 and 2000 were characterized for their genotypic antimicrobial resistance profiles. Tests for resistance to 10 antimicrobial agents were conducted. Resistance to tetracycline and sulfonamides was found to be the most frequent, but resistance to cefotaxime and ceftiofur was absent. An increase in the number of isolates resistant to at least three antimicrobials was observed over time. The distribution of 28 resistance genes covering six antimicrobial families (beta-lactams, aminoglycosides, phenicols, tetracycline, trimethoprim, and sulfonamides) was assessed by colony hybridization. Significant differences in the distributions of tetracycline [tet(A), tet(B), tet(C)], trimethoprim (dhfrI, dhfrV, dhfrXIII), and sulfonamide (sulI, sulII) resistance genes were observed during the study period (1978 to 2000). Sixty percent of the isolates possessed a class 1 integron, illustrating the importance of integrons in the epidemiology of antibiotic resistance in E. coli strains from pigs. Amplification of the integron's variable region resulted in four distinct fragments of 1, 1.3, 1.6, and 1.8 kb, with the 1.6- and 1.8-kb fragments appearing only during the last half of the study period. Examination of linkages among the different resistance genes showed a variety of positive and negative associations. Association analysis of isolates divided into two groups, those isolated between 1978 and 1989 and those isolated between 1990 and 2000, revealed the appearance of new positive resistance gene associations. Our genotypic resistance analyses of ETEC isolates from pigs indicate that many of the antibiotic resistance genes behind phenotypic resistance are not static but, rather, are in a state of flux driven by various selection forces such as the use of specific antimicrobials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance

              Intestinal infection with enterotoxigenic Escherichia coli (ETEC) is an important disease in swine resulting in significant economic losses. Knowledge about the epidemiology, the diagnostic approach and methods of control are of fundamental importance to tackle the disease. The ETEC causing neonatal colibacillosis mostly carry the fimbriae F4 (k88), F5 (k99), F6 (987P) or F41, while the ETEC of post-weaning diarrhoea carry the fimbriae F4 (k88) and F18. These fimbriae adhere to specific receptors on porcine intestinal brush border epithelial cells (enterocytes), starting the process of enteric infection. After this colonization, the bacteria produce one or more enterotoxins inducing diarrhoea, such as the heat stable toxin a (STa), the heat stable toxin b (STb), and the heat labile toxin (LT). A role in the pathogenesis of the disease was demonstrated for these toxins. The diagnosis of enteric colibacillosis is based on the isolation and quantification of the pathogenic E.coli coupled with the demonstration by PCR of the genes encoding for virulence factors (fimbriae and toxins). The diagnostic approach to enteric colibacillosis must consider the differential diagnosis and the potential different causes that can be involved in the outbreak. Among the different methods of control of colibacillosis, the use of antimicrobials is widely practiced and antibiotics are used in two main ways: as prophylactic or metaphylactic treatment to prevent disease and for therapeutic purposes to treat diseased pigs. An accurate diagnosis of enteric colibacillosis needs an appropriate sampling for the isolation and quantification of the ETEC responsible for the outbreak by using semi-quantitative bacteriology. Definitive diagnosis is based on the presence of characteristic lesions and results of bacteriology along with confirmation of appropriate virulence factors to identify the isolated E.coli. It is important to confirm the diagnosis and to perform antimicrobial sensitivity tests because antimicrobial sensitivity varies greatly among E. coli isolates. Growing concern on the increase of antimicrobial resistance force a more rational use of antibiotics and this can be achieved through a correct understanding of the issues related to antibiotic therapy and to the use of antibiotics by both practitioners and farmers.
                Bookmark

                Author and article information

                Contributors
                amiddelkoop@schothorst.nl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 January 2024
                24 January 2024
                2024
                : 14
                : 2060
                Affiliations
                [1 ]Schothorst Feed Research B.V., ( https://ror.org/024h8zy86) 8218 NA Lelystad, The Netherlands
                [2 ]Hankkija Oy, 05800 Hyvinkää, Finland
                [3 ]Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, ( https://ror.org/035b05819) 1870 Frederiksberg C, Denmark
                Article
                52586
                10.1038/s41598-024-52586-3
                10808182
                38267615
                fc744177-1d87-45ae-9d56-ad620cf51a59
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 October 2023
                : 20 January 2024
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                animal breeding,pathogens
                Uncategorized
                animal breeding, pathogens

                Comments

                Comment on this article