18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF. Importantly, not all individuals age at the same rate. Rather, individuals of the same chronological age can vary in health status from fit to frail. Frailty can be quantified using a frailty index, which can be used to assess heterogeneity in individuals of the same chronological age. AF is thought to occur in association with electrical remodeling due to changes in ion channel expression or function as well as structural remodeling due to fibrosis, myocyte hypertrophy, or adiposity. These forms of remodeling can lead to triggered activity and electrical re-entry, which are fundamental mechanisms of AF initiation and maintenance. Nevertheless, the underlying determinants of electrical and structural remodeling are distinct in different conditions and disease states. In this focused review, we consider the factors leading to atrial electrical and structural remodeling in human patients and animal models of acquired cardiovascular disease or associated risk factors. Our goal is to identify similarities and differences in the cellular and molecular bases for atrial electrical and structural remodeling in conditions including DM, hypertension, hypertrophy, heart failure, aging, and frailty.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A standard procedure for creating a frailty index

          Background Frailty can be measured in relation to the accumulation of deficits using a frailty index. A frailty index can be developed from most ageing databases. Our objective is to systematically describe a standard procedure for constructing a frailty index. Methods This is a secondary analysis of the Yale Precipitating Events Project cohort study, based in New Haven CT. Non-disabled people aged 70 years or older (n = 754) were enrolled and re-contacted every 18 months. The database includes variables on function, cognition, co-morbidity, health attitudes and practices and physical performance measures. Data came from the baseline cohort and those available at the first 18-month follow-up assessment. Results Procedures for selecting health variables as candidate deficits were applied to yield 40 deficits. Recoding procedures were applied for categorical, ordinal and interval variables such that they could be mapped to the interval 0–1, where 0 = absence of a deficit, and 1= full expression of the deficit. These individual deficit scores were combined in an index, where 0= no deficit present, and 1= all 40 deficits present. The values of the index were well fit by a gamma distribution. Between the baseline and follow-up cohorts, the age-related slope of deficit accumulation increased from 0.020 (95% confidence interval, 0.014–0.026) to 0.026 (0.020–0.032). The 99% limit to deficit accumulation was 0.6 in the baseline cohort and 0.7 in the follow-up cohort. Multivariate Cox analysis showed the frailty index, age and sex to be significant predictors of mortality. Conclusion A systematic process for creating a frailty index, which relates deficit accumulation to the individual risk of death, showed reproducible properties in the Yale Precipitating Events Project cohort study. This method of quantifying frailty can aid our understanding of frailty-related health characteristics in older adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.

            Glucose metabolism is normally regulated by a feedback loop including islet β cells and insulin-sensitive tissues, in which tissue sensitivity to insulin affects magnitude of β-cell response. If insulin resistance is present, β cells maintain normal glucose tolerance by increasing insulin output. Only when β cells cannot release sufficient insulin in the presence of insulin resistance do glucose concentrations rise. Although β-cell dysfunction has a clear genetic component, environmental changes play an essential part. Modern research approaches have helped to establish the important role that hexoses, aminoacids, and fatty acids have in insulin resistance and β-cell dysfunction, and the potential role of changes in the microbiome. Several new approaches for treatment have been developed, but more effective therapies to slow progressive loss of β-cell function are needed. Recent findings from clinical trials provide important information about methods to prevent and treat type 2 diabetes and some of the adverse effects of these interventions. However, additional long-term studies of drugs and bariatric surgery are needed to identify new ways to prevent and treat type 2 diabetes and thereby reduce the harmful effects of this disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study.

              To determine the independent risk factors for atrial fibrillation. Cohort study. The Framingham Heart Study. A total of 2090 men and 2641 women members of the original cohort, free of a history of atrial fibrillation, between the ages of 55 and 94 years. Sex-specific multiple logistic regression models to identify independent risk factors for atrial fibrillation, including age, smoking, diabetes, electrocardiographic left ventricular hypertrophy, hypertension, myocardial infarction, congestive heart failure, and valve disease. During up to 38 years of follow-up, 264 men and 298 women developed atrial fibrillation. After adjusting for age and other risk factors for atrial fibrillation, men had a 1.5 times greater risk of developing atrial fibrillation than women. In the full multivariable model, the odds ratio (OR) of atrial fibrillation for each decade of advancing age was 2.1 for men and 2.2 for women (P < .0001). In addition, after multivariable adjustment, diabetes (OR, 1.4 for men and 1.6 for women), hypertension (OR, 1.5 for men and 1.4 for women), congestive heart failure (OR, 4.5 for men and 5.9 for women), and valve disease (OR, 1.8 for men and 3.4 for women) were significantly associated with risk for atrial fibrillation in both sexes. Myocardial infarction (OR, 1.4) was significantly associated with the development of atrial fibrillation in men. Women were significantly more likely than men to have valvular heart disease as a risk factor for atrial fibrillation. The multivariable models were largely unchanged after eliminating subjects with valvular heart disease. In addition to intrinsic cardiac causes such as valve disease and congestive heart failure, risk factors for cardiovascular disease also predispose to atrial fibrillation. Modification of risk factors for cardiovascular disease may have the added benefit of diminishing the incidence of atrial fibrillation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heart Rhythm O2
                Heart Rhythm O2
                Heart Rhythm O2
                Elsevier
                2666-5018
                18 May 2020
                June 2020
                18 May 2020
                : 1
                : 2
                : 147-159
                Affiliations
                []Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
                []Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
                Author notes
                [] Address reprint requests and correspondence: Dr Robert A. Rose, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, GAC66, Health Research Innovation Centre, 3280 Hospital Drive NW, Calgary, Alberta, Canada T2N 4Z6. robert.rose@ 123456ucalgary.ca
                [1]

                Dr Hailey J. Jansen and Loryn J. Bohne contributed equally to this manuscript.

                Article
                S2666-5018(20)30041-6
                10.1016/j.hroo.2020.05.002
                8183954
                34113869
                fce50fc9-1ba2-4756-9583-c8aaf462d389
                © 2020 Heart Rhythm Society. Published by Elsevier Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Topics in Review

                aging,diabetes mellitus,electrical remodeling,fibrosis,frailty,heart failure,hypertension,hypertrophy,obesity

                Comments

                Comment on this article