Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent advances of high entropy alloys for aerospace applications: a review

      , ,
      World Journal of Engineering

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

          Design/methodology/approach

          Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

          Findings

          HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

          Research limitations/implications

          The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

          Originality/value

          It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

          Related collections

          Most cited references336

          • Record: found
          • Abstract: not found
          • Article: not found

          Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microstructural development in equiatomic multicomponent alloys

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A fracture-resistant high-entropy alloy for cryogenic applications.

              High-entropy alloys are equiatomic, multi-element systems that can crystallize as a single phase, despite containing multiple elements with different crystal structures. A rationale for this is that the configurational entropy contribution to the total free energy in alloys with five or more major elements may stabilize the solid-solution state relative to multiphase microstructures. We examined a five-element high-entropy alloy, CrMnFeCoNi, which forms a single-phase face-centered cubic solid solution, and found it to have exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness values exceeding 200 MPa·m(1/2). Furthermore, its mechanical properties actually improve at cryogenic temperatures; we attribute this to a transition from planar-slip dislocation activity at room temperature to deformation by mechanical nanotwinning with decreasing temperature, which results in continuous steady strain hardening. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                World Journal of Engineering
                WJE
                1708-5284
                1708-5284
                August 02 2021
                January 11 2023
                August 02 2021
                January 11 2023
                : 20
                : 1
                : 43-74
                Article
                10.1108/WJE-01-2021-0040
                fce56ab1-75e8-402f-8419-cf1287aa9fb3
                © 2023

                https://www.emerald.com/insight/site-policies

                History

                Comments

                Comment on this article