24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chitin and its derivative chitosan are popular constituents in wound-treatment technologies due to their nanoscale fibrous morphology and attractive biomedical properties that accelerate healing and reduce scarring. These abundant natural polymers found in arthropod exoskeletons and fungal cell walls affect almost every phase of the healing process, acting as hemostatic and antibacterial agents that also support cell proliferation and attachment. However, key differences exist in the structure, properties, processing, and associated polymers of fungal and arthropod chitin, affecting their respective application to wound treatment. High purity crustacean-derived chitin and chitosan have been widely investigated for wound-treatment applications, with research incorporating chemically modified chitosan derivatives and advanced nanocomposite dressings utilizing biocompatible additives, such as natural polysaccharides, mineral clays, and metal nanoparticles used to achieve excellent mechanical and biomedical properties. Conversely, fungi-derived chitin is covalently decorated with β-glucan and has received less research interest despite its mass production potential, simple extraction process, variations in chitin and associated polymer content, and the established healing properties of fungal exopolysaccharides. This review investigates the proven biomedical properties of both fungal- and crustacean-derived chitin and chitosan, their healing mechanisms, and their potential to advance modern wound-treatment methods through further research and practical application.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Electrospun nanofibrous structure: A novel scaffold for tissue engineering

          The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L-lactide-co-glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue-engineering applications. Electrospinning is a process whereby ultra-fine fibers are formed in a high-voltage electrostatic field. The electrospun structure, composed of PLGA fibers ranging from 500 to 800 nm in diameter, features a morphologic similarity to the extracellular matrix (ECM) of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, and effective mechanical properties. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell-matrix interaction within the cellular construct supports the active biocompatibility of the structure. The electrospun nanofibrous structure is capable of supporting cell attachment and proliferation. Cells seeded on this structure tend to maintain phenotypic shape and guided growth according to nanofiber orientation. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique architecture, which acts to support and guide cell growth. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 613-621, 2002
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cell wall: a carbohydrate armour for the fungal cell.

            The cell wall is composed of a polysaccharide-based three-dimensional network. Considered for a long time as an inert exoskeleton, the cell wall is now seen as a dynamic structure that is continuously changing as a result of the modification of culture conditions and environmental stresses. Although the cell wall composition varies among fungal species, chemogenomic comparative analysis have led to a better understanding of the genes and mechanisms involved in the construction of the common central core composed of branched beta1,3 glucan-chitin. Because of its essential biological role, unique biochemistry and structural organization and the absence in mammalian cells of most of its constitutive components, the cell wall is an attractive target for the development of new antifungal agents. Genomic as well as drug studies have shown that the death of the fungus can result from inhibition of cell wall polysaccharide synthases. To date, only beta1,3 glucan synthase inhibitors have been launched clinically and many more targets remain to be explored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beta-glucan recognition by the innate immune system.

              Beta-glucans are recognized by the innate immune system. This recognition plays important roles in host defense and presents specific opportunities for clinical modulation of the host immune response. Neutrophils, macrophages, and dendritic cells among others express several receptors capable of recognizing beta-glucan in its various forms. This review explores what is currently known about beta-glucan recognition and how this recognition stimulates immune responses. Special emphasis is placed on Dectin-1, as we know the most about how this key beta-glucan receptor translates recognition into intracellular signaling, stimulates cellular responses, and participates in orchestrating the adaptive immune response.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                18 January 2020
                January 2020
                : 18
                : 1
                : 64
                Affiliations
                [1 ]School of Engineering, RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora VIC 3083, Australia
                [2 ]Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
                Author notes
                Author information
                https://orcid.org/0000-0002-0251-1109
                Article
                marinedrugs-18-00064
                10.3390/md18010064
                7024172
                31963764
                fd018414-4e30-47bd-9b5b-03f925144736
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 December 2019
                : 15 January 2020
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                chitin,chitosan,wound treatment,derivatization,nanocomposites

                Comments

                Comment on this article