17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-138 Overexpression Alters Aβ42 Levels and Behavior in Wildtype Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by changes in cognitive and behavioral functions. With the exception or rare mutations in PSEN and APP genes causing early-onset autosomal dominant AD (EOADAD), little is known about the genetic factors that underlie the vast majority (>95%) of early onset AD (EOAD) cases. We have previously identified copy number variations (CNVs) in microRNA genes in patients with EOAD, including a duplication of the MIR-138-2 gene. Overexpression of miR-138 in cultured cells increased Aβ production and tau phosphorylation, similar to what is seen in AD brain. In this study, we sought to determine if miR-138 overexpression could recapitulate certain features of disease in vivo in non-transgenic mice. A mild overexpression of pre-miR-138 in the brain of C57BL/6J wildtype mice altered learning and memory in a novel object recognition test and in the Barnes Maze. Increased levels of anxiety were also observed in the open-field test. MiR-138 upregulation in vivo caused an increase in endogenous Aβ42 production as well as changes in synaptic and inflammation markers. Tau expression was significantly lower with no overt effects on phosphorylation. We finally observed that Sirt1, a direct target of miR-138 involved in Aβ production, learning and memory as well as anxiety, is decreased following miR-138 overexpression. In sum, this study further strengthens a role for increased gene dosage of MIR-138-2 gene in modulating AD risk, possibly by acting on different biological pathways. Further studies will be required to better understand the role of CNVs in microRNA genes in AD and related neurodegenerative disorders.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Neuropathological stageing of Alzheimer-related changes

          Eighty-three brains obtained at autopsy from nondemented and demented individuals were examined for extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern and packing density of amyloid deposits turned out to be of limited significance for differentiation of neuropathological stages. Neurofibrillary changes occurred in the form of neuritic plaques, neurofibrillary tangles and neuropil threads. The distribution of neuritic plaques varied widely not only within architectonic units but also from one individual to another. Neurofibrillary tangles and neuropil threads, in contrast, exhibited a characteristic distribution pattern permitting the differentiation of six stages. The first two stages were characterized by an either mild or severe alteration of the transentorhinal layer Pre-alpha (transentorhinal stages I-II). The two forms of limbic stages (stages III-IV) were marked by a conspicuous affection of layer Pre-alpha in both transentorhinal region and proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical association areas. The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ImageJ2: ImageJ for the next generation of scientific image data

            Background ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software’s ability to handle the requirements of modern science. Results We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing community while addressing a wider range of scientific requirements. This next-generation ImageJ, called “ImageJ2” in places where the distinction matters, provides a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. Conclusions Scientific imaging benefits from open-source programs that advance new method development and deployment to a diverse audience. ImageJ has continuously evolved with this idea in mind; however, new and emerging scientific requirements have posed corresponding challenges for ImageJ’s development. The described improvements provide a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs. Future efforts will focus on implementing new algorithms in this framework and expanding collaborations with other popular scientific software suites. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1934-z) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              APP processing and synaptic function.

              A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimer's disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation and secretion of Abeta peptides in hippocampal slice neurons that overexpress APP. In turn, Abeta selectively depresses excitatory synaptic transmission onto neurons that overexpress APP, as well as nearby neurons that do not. This depression depends on NMDA-R activity and can be reversed by blockade of neuronal activity. Synaptic depression from excessive Abeta could contribute to cognitive decline during early AD. In addition, we propose that activity-dependent modulation of endogenous Abeta production may normally participate in a negative feedback that could keep neuronal hyperactivity in check. Disruption of this feedback system could contribute to disease progression in AD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                14 January 2021
                2020
                : 14
                : 591138
                Affiliations
                [1] 1Centre de Recherche du CHU de Québec – Université Laval, CHUL, Axe Neurosciences , Quebec City, QC, Canada
                [2] 2Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval , Quebec City, QC, Canada
                Author notes

                Edited by: Hitoshi Okazawa, Tokyo Medical and Dental University, Japan

                Reviewed by: Jonathan Brouillette, Université de Montréal, Canada; Wang-Xia Wang, University of Kentucky, United States

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.591138
                7840584
                33519353
                fd1932ee-9bb8-4c56-acc6-f1fb6b5563e8
                Copyright © 2021 Boscher, Goupil, Petry, Keraudren, Loiselle, Planel and Hébert.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 August 2020
                : 21 December 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 59, Pages: 11, Words: 0
                Funding
                Funded by: Canadian Institutes of Health Research 10.13039/501100000024
                Funded by: Fonds de Recherche du Québec - Santé 10.13039/501100000156
                Funded by: Huntington's Disease Society of America 10.13039/100000887
                Categories
                Neuroscience
                Original Research

                Neurosciences
                alzheimer’s disease,microrna,mir-138,memory,anxiety,adeno-associated virus
                Neurosciences
                alzheimer’s disease, microrna, mir-138, memory, anxiety, adeno-associated virus

                Comments

                Comment on this article