Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Attenuation of Aluminum Chloride-Induced Neuroinflammation and Caspase Activation Through the AKT/GSK-3β Pathway by Hesperidin in Wistar Rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.

          Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GFAP and astrogliosis.

            One of the most remarkable characteristics of astrocytes is their vigorous response to diverse neurologic insults, a feature that is well conserved across a variety of different species. The astroglial response occurs rapidly and can be detected within one hour of a focal mechanical trauma (Mucke et al., 1991). Prominent reactive astrogliosis is seen; in AIDS dementia; a variety of other viral infections; prion associated spongiform encephalopathies; inflammatory demyelinating diseases; acute traumatic brain injury; neurodegenerative diseases such as Alzheimer's disease. The prominence of astroglial reactions in various diseases, the rapidity of the astroglial response and the evolutionary conservation of reactive astrogliosis indicate that reactive astrocytes fulfill important functions of the central nervous system (CNS). Yet, the exact role reactive astrocytes play in the injured CNS has so far remained elusive. This chapter summaries the various experimental models and diseases that exhibit astrogliosis and increase in glial fibrillary acidic protein (GFAP). Recent in vitro studies to inhibit GFAP synthesis are also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia as mediators of inflammatory and degenerative diseases.

              Microglia are the principal immune cells in the central nervous system (CNS) and have a critical role in host defense against invading microorganisms and neoplastic cells. However, as with immune cells in other organs, microglia may play a dual role, amplifying the effects of inflammation and mediating cellular degeneration as well as protecting the CNS. In entities like human immunodeficiency virus (HIV) infection of the nervous system, microglia are also critical to viral persistence. In this review we discuss the role of microglia in three diseases in which their activity is at least partially deleterious: HIV, multiple sclerosis, and Alzheimer's disease.
                Bookmark

                Author and article information

                Journal
                Neurotoxicity Research
                Neurotox Res
                Springer Nature America, Inc
                1029-8428
                1476-3524
                April 23 2018
                Article
                10.1007/s12640-018-9904-4
                29687202
                fd2294a5-0963-4a25-b1aa-af20f2659714
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article