33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The impact of precursor water content on solution-processed organometal halide perovskite films and solar cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, the impact of the water content (up to 10 vol%) in DMF-based precursors on organometal halide perovskites is investigated. The photovoltaic performance is found not to be affected, thus relaxing the conditions for large-scale production of this upcoming photovoltaic technology.

          Abstract

          Perovskite solar cells are well known to degrade under post-fabrication stress, among others due to humidity as a consequence of the hydrophilic properties of the organic cation. On the other hand, it has been shown that the controlled addition of water molecules during the formation of the perovskite (while starting from water-free precursor materials) yields larger perovskite crystals with less defects, resulting in better device performance. One aspect still missing in this line of research is the water content of the perovskite precursors themselves: although most of them are prepared with anhydrous solvents as a precaution towards premature degradation, it is still unclear whether or not the precursors really need to be dry. In this paper, the impact of the perovskite precursor's water content up to 10 vol% is investigated, in the form of a detailed study regarding the opto-electronic and morphological properties of the resulting films and devices. It is found that only modest changes occur in the films that do not affect the final photovoltaic performance, thus relaxing the conditions for large-scale production of this upcoming photovoltaic technology.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance.

          Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm(-1). These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

              To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2015
                2015
                : 3
                : 37
                : 19123-19128
                Affiliations
                [1 ]Hasselt University
                [2 ]Institute for Materials Research
                [3 ]Diepenbeek
                [4 ]Belgium
                [5 ]X-LaB
                Article
                10.1039/C5TA06199G
                fd89a3ec-0a8d-4f26-9ef3-28098e9462b5
                © 2015
                History

                Comments

                Comment on this article