191
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifunctional in vivo vascular imaging using near-infrared II fluorescence

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vivo real-time epifluorescence imaging of mouse hindlimb vasculatures in the second near-infrared region (NIR-II, 1.1~1.4 microns) is performed using single-walled carbon nanotubes (SWNTs) as fluorophores. Both high spatial resolution (~30 microns) and temporal resolution (<200 ms/frame) for small vessel imaging are achieved 1-3 mm deep in the tissue owing to the beneficial NIR-II optical window that affords deep anatomical penetration and low scattering. This spatial resolution is unattainable by traditional NIR imaging (NIR-I, 0.75~0.9 microns) or microscopic computed tomography (micro-CT), while the temporal resolution far exceeds scanning microscopic imaging techniques. Arterial and venous vessels are unambiguously differentiated using a dynamic contrast-enhanced NIR-II imaging technique based on their distinct hemodynamics. Further, the deep tissue penetration, high spatial and temporal resolution of NIR-II imaging allow for precise quantifications of blood velocity in both normal and ischemic femoral arteries, which are beyond the capability of ultrasonography at lower blood velocity.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Preparation of carbon nanotube bioconjugates for biomedical applications.

          Biomedical applications of carbon nanotubes have attracted much attention in recent years. Here, we summarize our previously developed protocols for functionalization and bioconjugation of single-walled carbon nanotubes (SWNTs) for various biomedical applications including biological imaging; using nanotubes as Raman, photoluminescence and photoacoustic labels; sensing using nanotubes as Raman tags and drug delivery. Sonication of SWNTs in solutions of phospholipid-polyethylene glycol (PL-PEG) is our most commonly used protocol of SWNT functionalization. Compared with other frequently used covalent strategies, our non-covalent functionalization protocol largely retains the intrinsic optical properties of SWNTs, which are useful in various biological imaging and sensing applications. Functionalized SWNTs are conjugated with targeting ligands, including peptides and antibodies for specific cell labeling in vitro or tumor targeting in vivo. Radio labels are introduced for tracking and imaging of SWNTs in real time in vivo. Moreover, SWNTs can be conjugated with small interfering RNA (siRNA) or loaded with chemotherapy drugs for drug delivery. These procedures take various times ranging from 1 to 5 d.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Optical Properties of Single-Walled Carbon Nanotubes Separated in a Density Gradient: Length, Bundling, and Aromatic Stacking Effects

              Bookmark

              Author and article information

              Journal
              18 November 2012
              Article
              10.1038/nm.2995
              1211.4269
              fdaaa2d6-962c-4b8b-a637-6120d9ef8c2c

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              33 pages, 5 main text figures, 6 supporting figures and 2 tables; Published online at Nature Medicine, 2012
              physics.med-ph physics.bio-ph physics.optics

              Comments

              Comment on this article