35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Co-transmission of acetylcholine and GABA regulates hippocampal states

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABA A receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.

          Abstract

          Acetylcholine (ACh) release in the central nervous system is thought to be unitary and mediated non-synaptically in volume transmission. Here, Takács and colleagues show cholinergic terminals juxtapose GABAergic synapses anatomically and functionally, and GABA and ACh molecules are co-transmitted.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior.

          Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here, we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on site of release, receptor subtypes, and target neuronal population; however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incidence and predictors of seizures in patients with Alzheimer's disease.

            To determine cumulative incidence and predictors of new-onset seizures in mild Alzheimer's disease (AD) with a cohort followed prospectively. Limited information is available on the incidence of seizures, and no reports exist of seizure predictors in AD patients. Mild AD patients were prospectively followed at 6-month intervals to estimate incidence of unprovoked seizures, compare age-specific risk of unprovoked seizures with population norms, and identify characteristics at baseline (demographics, duration and severity of AD, physical and diagnostic test findings, and comorbid medical and psychiatric conditions) influencing unprovoked seizure risk. Review of study charts and medical records supplemented coded end-point data. The cumulative incidence of unprovoked seizures at 7 years was nearly 8%. In all age groups, risk was increased compared with a standard population, with an 87-fold increase in the youngest group (age 50-59 years) and more than a threefold increase in the oldest group (age 85+ years). In multivariate modeling, independent predictors of unprovoked seizures were younger age [relative risk (RR), 0.89 per year increase in age; 95% confidence interval (CI), 0.82-0.97], African-American ethnic background (RR, 7.35; 95% CI, 1.42-37.98), more-severe dementia (RR, 4.15; 95% CI, 1.06-16.27), and focal epileptiform findings on electroencephalogram (EEG) (RR, 73.36; 95% CI, 1.75-3075.25). Seizure incidence is increased in people starting with mild-to-moderate AD. Younger individuals, African Americans, and those with more-severe disease or focal epileptiform findings on EEG were more likely to have unprovoked seizures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback.

              Basal forebrain cholinergic neurons constitute a major neuromodulatory system implicated in normal cognition and neurodegenerative dementias. Cholinergic projections densely innervate neocortex, releasing acetylcholine to regulate arousal, attention, and learning. However, their precise behavioral function is poorly understood because identified cholinergic neurons have never been recorded during behavior. To determine which aspects of cognition their activity might support, we recorded cholinergic neurons using optogenetic identification in mice performing an auditory detection task requiring sustained attention. We found that a non-cholinergic basal forebrain population-but not cholinergic neurons-were correlated with trial-to-trial measures of attention. Surprisingly, cholinergic neurons responded to reward and punishment with unusual speed and precision (18 ± 3 ms). Cholinergic responses were scaled by the unexpectedness of reinforcement and were highly similar across neurons and two nuclei innervating distinct cortical areas. These results reveal that the cholinergic system broadcasts a rapid and precisely timed reinforcement signal, supporting fast cortical activation and plasticity.
                Bookmark

                Author and article information

                Contributors
                nyiri@koki.hu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                20 July 2018
                20 July 2018
                2018
                : 9
                : 2848
                Affiliations
                [1 ]ISNI 0000 0001 2149 4407, GRID grid.5018.c, Laboratory of Cerebral Cortex Research Institute of Experimental Medicine, , Hungarian Academy of Sciences, Szigony u 43, ; Budapest, 1083 Hungary
                [2 ]ISNI 0000 0001 0942 9821, GRID grid.11804.3c, János Szentágothai Doctoral School of Neurosciences, , Semmelweis University, ; Budapest, 1085 Hungary
                [3 ]ISNI 0000 0001 2149 4407, GRID grid.5018.c, Present Address: Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, , Hungarian Academy of Sciences, Szigony u 43, ; Budapest, 1083 Hungary
                [4 ]ISNI 0000 0001 2149 4407, GRID grid.5018.c, Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, , Hungarian Academy of Sciences, Szigony u 43, ; Budapest, 1083 Hungary
                Article
                5136
                10.1038/s41467-018-05136-1
                6054650
                30030438
                fdc6d328-e6ce-47fa-aadf-fc4ee5ed9aa7
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 January 2018
                : 12 June 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000781, EC | European Research Council (ERC);
                Award ID: ERC-2011-ADG-294313, SERRACO
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article