23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histone Methylation Regulation in Neurodegenerative Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: not found

          Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.

          Several families have been reported with autosomal-dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here, we report an expansion of a noncoding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43-based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (23.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.

            The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parkinson's disease: clinical features and diagnosis.

              Parkinson's disease (PD) is a progressive neurological disorder characterised by a large number of motor and non-motor features that can impact on function to a variable degree. This review describes the clinical characteristics of PD with emphasis on those features that differentiate the disease from other parkinsonian disorders. A MedLine search was performed to identify studies that assess the clinical characteristics of PD. Search terms included "Parkinson's disease", "diagnosis" and "signs and symptoms". Because there is no definitive test for the diagnosis of PD, the disease must be diagnosed based on clinical criteria. Rest tremor, bradykinesia, rigidity and loss of postural reflexes are generally considered the cardinal signs of PD. The presence and specific presentation of these features are used to differentiate PD from related parkinsonian disorders. Other clinical features include secondary motor symptoms (eg, hypomimia, dysarthria, dysphagia, sialorrhoea, micrographia, shuffling gait, festination, freezing, dystonia, glabellar reflexes), non-motor symptoms (eg, autonomic dysfunction, cognitive/neurobehavioral abnormalities, sleep disorders and sensory abnormalities such as anosmia, paresthesias and pain). Absence of rest tremor, early occurrence of gait difficulty, postural instability, dementia, hallucinations, and the presence of dysautonomia, ophthalmoparesis, ataxia and other atypical features, coupled with poor or no response to levodopa, suggest diagnoses other than PD. A thorough understanding of the broad spectrum of clinical manifestations of PD is essential to the proper diagnosis of the disease. Genetic mutations or variants, neuroimaging abnormalities and other tests are potential biomarkers that may improve diagnosis and allow the identification of persons at risk.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                28 April 2021
                May 2021
                : 22
                : 9
                : 4654
                Affiliations
                [1 ]Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; subbanna.shivakumar@ 123456nki.rfmh.org
                [2 ]New York State Psychiatric Institute, New York, NY 10032, USA
                [3 ]Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
                [4 ]New York University Langone Medical Center, Department of Psychiatry, New York, NY 10016, USA
                Author notes
                [* ]Correspondence: Basavaraj.Balapal@ 123456nki.rfmh.org ; Tel.: +1-845-398-3234; Fax: +1-845-398-5451
                Author information
                https://orcid.org/0000-0002-4429-8078
                Article
                ijms-22-04654
                10.3390/ijms22094654
                8125694
                33925016
                fe10b2ae-ccf8-4f15-9f93-757be3bf4713
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 March 2021
                : 23 April 2021
                Categories
                Review

                Molecular biology
                epigenetics,alzheimer’s disease,parkinson’s disease,huntington’s disease,amyotrophic lateral sclerosis,neuronal loss and alcohol

                Comments

                Comment on this article