25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single-molecule localization microscopy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references258

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A guided tour into subcellular colocalization analysis in light microscopy.

            It is generally accepted that the functional compartmentalization of eukaryotic cells is reflected by the differential occurrence of proteins in their compartments. The location and physiological function of a protein are closely related; local information of a protein is thus crucial to understanding its role in biological processes. The visualization of proteins residing on intracellular structures by fluorescence microscopy has become a routine approach in cell biology and is increasingly used to assess their colocalization with well-characterized markers. However, image-analysis methods for colocalization studies are a field of contention and enigma. We have therefore undertaken to review the most currently used colocalization analysis methods, introducing the basic optical concepts important for image acquisition and subsequent analysis. We provide a summary of practical tips for image acquisition and treatment that should precede proper colocalization analysis. Furthermore, we discuss the application and feasibility of colocalization tools for various biological colocalization situations and discuss their respective strengths and weaknesses. We have created a novel toolbox for subcellular colocalization analysis under ImageJ, named JACoP, that integrates current global statistic methods and a novel object-based approach.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).

              We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Methods Primers
                Nat Rev Methods Primers
                Springer Science and Business Media LLC
                2662-8449
                December 2021
                June 03 2021
                December 2021
                : 1
                : 1
                Article
                10.1038/s43586-021-00038-x
                35663461
                fe22255d-3cb5-4698-ae13-2a13b3b7d0c8
                © 2021

                Free to read

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article