24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Environmental applications for biosurfactants.

          Biosurfactants are surfactants that are produced extracellularly or as part of the cell membrane by bacteria, yeasts and fungi. Examples include Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, one of the few yeasts to produce biosurfactants, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. This review includes environmental applications of these biosurfactants for soil and water treatment. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. However, more information is needed to be able to predict and model their behaviour. Full scale tests will be required. The role of biosurfactants in natural attenuation processes has not been determined. Very little information is available concerning the influence of soil components on the remediation process with biosurfactants. As most of the research until now has been performed with rhamnolipids, other biosurfactants need to be investigated as they may have more promising properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview

            One of the major environmental problems today is hydrocarbon contamination resulting from the activities related to the petrochemical industry. Accidental releases of petroleum products are of particular concern in the environment. Hydrocarbon components have been known to belong to the family of carcinogens and neurotoxic organic pollutants. Currently accepted disposal methods of incineration or burial insecure landfills can become prohibitively expensive when amounts of contaminants are large. Mechanical and chemical methods generally used to remove hydrocarbons from contaminated sites have limited effectiveness and can be expensive. Bioremediation is the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization. Bioremediation functions basically on biodegradation, which may refer to complete mineralization of organic contaminants into carbon dioxide, water, inorganic compounds, and cell protein or transformation of complex organic contaminants to other simpler organic compounds by biological agents like microorganisms. Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. This paper presents an updated overview of petroleum hydrocarbon degradation by microorganisms under different ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards commercial production of microbial surfactants.

              Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biosurfactants have gained importance in the fields of enhanced oil recovery, environmental bioremediation, food processing and pharmaceuticals owing to their unique properties--higher biodegradability, lower toxicity, and effectiveness at extremes of temperature, pH and salinity. However, large-scale production of these molecules has not been realized because of low yields in production processes and high recovery and purification costs. This article describes some practical approaches that have been adopted to make the biosurfactant production process economically attractive: these include the use of cheaper raw materials, optimized and efficient bioprocesses and overproducing mutant and recombinant strains for obtaining maximum productivity. The application of these strategies in biosurfactant production processes, particularly those using hyper-producing recombinant strains in the optimally controlled environment of a bioreactor, might lead towards the successful commercial production of these valuable and versatile biomolecules in near future.
                Bookmark

                Author and article information

                Journal
                Environmental Science and Pollution Research
                Environ Sci Pollut Res
                Springer Nature
                0944-1344
                1614-7499
                November 2015
                July 2015
                : 22
                : 22
                : 17636-17643
                Article
                10.1007/s11356-015-4937-1
                fe4faa06-e6b3-4c91-86ee-989fb86ece74
                © 2015
                History

                Comments

                Comment on this article