16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis.

          Once-daily injections of parathyroid hormone or its amino-terminal fragments increase bone formation and bone mass without causing hypercalcemia, but their effects on fractures are unknown. We randomly assigned 1637 postmenopausal women with prior vertebral fractures to receive 20 or 40 microg of parathyroid hormone (1-34) or placebo, administered subcutaneously by the women daily. We obtained vertebral radiographs at base line and at the end of the study (median duration of observation, 21 months) and performed serial measurements of bone mass by dual-energy x-ray absorptiometry. New vertebral fractures occurred in 14 percent of the women in the placebo group and in 5 percent and 4 percent, respectively, of the women in the 20-microg and 40-microg parathyroid hormone groups; the respective relative risks of fracture in the 20-microg and 40-microg groups, as compared with the placebo group, were 0.35 and 0.31 (95 percent confidence intervals, 0.22 to 0.55 and 0.19 to 0.50). New nonvertebral fragility fractures occurred in 6 percent of the women in the placebo group and in 3 percent of those in each parathyroid hormone group (relative risk, 0.47 and 0.46, respectively [95 percent confidence intervals, 0.25 to 0.88 and 0.25 to 0.861). As compared with placebo, the 20-microg and 40-microg doses of parathyroid hormone increased bone mineral density by 9 and 13 more percentage points in the lumbar spine and by 3 and 6 more percentage points in the femoral neck; the 40-microg dose decreased bone mineral density at the shaft of the radius by 2 more percentage points. Both doses increased total-body bone mineral by 2 to 4 more percentage points than did placebo. Parathyroid hormone had only minor side effects (occasional nausea and headache). Treatment of postmenopausal osteoporosis with parathyroid hormone (1-34) decreases the risk of vertebral and nonvertebral fractures; increases vertebral, femoral, and total-body bone mineral density; and is well tolerated. The 40-microg dose increased bone mineral density more than the 20-microg dose but had similar effects on the risk of fracture and was more likely to have side effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WNT signaling in bone homeostasis and disease: from human mutations to treatments.

            Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels.

              During endochondral bone development, the first osteoblasts differentiate in the perichondrium surrounding avascular cartilaginous rudiments; the source of trabecular osteoblasts inside the later bone is, however, unknown. Here, we generated tamoxifen-inducible transgenic mice bred to Rosa26R-LacZ reporter mice to follow the fates of stage-selective subsets of osteoblast lineage cells. Pulse-chase studies showed that osterix-expressing osteoblast precursors, labeled in the perichondrium prior to vascular invasion of the cartilage, give rise to trabecular osteoblasts, osteocytes, and stromal cells inside the developing bone. Throughout the translocation, some precursors were found to intimately associate with invading blood vessels, in pericyte-like fashion. A similar coinvasion occurs during endochondral healing of bone fractures. In contrast, perichondrial mature osteoblasts did not exhibit perivascular localization and remained in the outer cortex of developing bones. These findings reveal the specific involvement of immature osteoblast precursors in the coupled vascular and osteogenic transformation essential to endochondral bone development and repair. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Senior Editor
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                08 February 2019
                2019
                : 8
                : e42386
                Affiliations
                [1 ]deptDepartment of Developmental Biology Harvard School of Dental Medicine BostonUnited States
                [2 ]deptInstitute for Molecular Life Sciences University of Zürich ZürichSwitzerland
                [3 ]deptInstituto de Ciência e Tecnologia Universidade Federal de São Paulo São PauloBrazil
                [4 ]deptWallenberg Centre for Molecular Medicine, Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences Linköping University LinköpingSweden
                [5 ]Regeneron Pharmaceuticals TarrytownUnited States
                [6 ]deptDepartment of Microbial Chemistry, Graduate School of Pharmaceutical Sciences Kitasato University TokyoJapan
                [7 ]deptDepartment of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center NashvilleUnited States
                [8 ]Geisinger Health System DanvilleUnited States
                Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine United States
                Maine Medical Center Research Institute United States
                Maine Medical Center Research Institute United States
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0002-2111-9313
                https://orcid.org/0000-0002-6508-8942
                http://orcid.org/0000-0002-4029-1055
                Article
                42386
                10.7554/eLife.42386
                6386520
                30735122
                fe7f0e94-d2e5-4ea0-b843-582bf9346b1f
                © 2019, Salazar et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 27 September 2018
                : 06 February 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000069, National Institute of Arthritis and Musculoskeletal and Skin Diseases;
                Award ID: R01 AR055904
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Cell Biology
                Developmental Biology
                Custom metadata
                A periosteal Bmp2 signaling center couples bone length to bone width during development and must be reactivated by clinical bone anabolic therapies to reduce fracture risk and accelerate fracture repair.

                Life sciences
                periosteum,bmp,wnt,fracture,bone,skeletal,human,mouse
                Life sciences
                periosteum, bmp, wnt, fracture, bone, skeletal, human, mouse

                Comments

                Comment on this article