1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced electrocatalytic degradation of 2,4-Dinitrophenol (2,4-DNP) in three-dimensional sono-electrochemical (3D/SEC) process equipped with Fe/SBA-15 nanocomposite particle electrodes: Degradation pathway and application for real wastewater

      , , ,
      Arabian Journal of Chemistry
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores

          Zhao, Feng, Huo (1998)
          Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms. The SBA-15 materials are synthesized in acidic media to produce highly ordered, two-dimensional hexagonal (space group p6mm) silica-block copolymer mesophases. Calcination at 500 degrees C gives porous structures with unusually large interlattice d spacings of 74.5 to 320 angstroms between the (100) planes, pore sizes from 46 to 300 angstroms, pore volume fractions up to 0.85, and silica wall thicknesses of 31 to 64 angstroms. SBA-15 can be readily prepared over a wide range of uniform pore sizes and pore wall thicknesses at low temperature (35 degrees to 80 degrees C), using a variety of poly(alkylene oxide) triblock copolymers and by the addition of cosolvent organic molecules. The block copolymer species can be recovered for reuse by solvent extraction with ethanol or removed by heating at 140 degrees C for 3 hours, in both cases, yielding a product that is thermally stable in boiling water.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles.

            In the present investigation, a porous MgO powder was synthesized and tested for the removal of dyes from aqueous solution. The size of the MgO particles was in the range of 38-44 nm, with an average specific surface area of 153.7 m(2)/g. Adsorption of reactive blue 19 and reactive red 198 was conducted to model azo and anthraquinone dyes at various MgO dosages, dye concentrations, solution pHs and contact times in a batch reactor. Experimental results indicate that the prepared MgO powder can remove more than 98% of both dyes under optimum operational conditions of a dosage of 0.2g, pH 8 and a contact time of 5 min for initial dye concentrations of 50-300 mg/L. The isotherm evaluations revealed that the Langmuir model attained better fits to the experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacities were 166.7 and 123.5mg of dye per gram of adsorbent for RB 19 and RR 198, respectively. In addition, adsorption kinetic data followed a pseudo-second-order rate for both tested dyes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst.

              p-Nitrophenol (PNP) is a difficultly decomposed organic pollutant under solar light in the absence of strong oxidants. This study shows that under artificial solar light PNP can be effectively degraded by a Cu(2)O/TiO(2) p-n junction network which is fabricated by anodizing Cu(0) particles-loaded TiO(2) nanotubes (NTs). The network is composed of p-type Cu(2)O nanowires on the top surface and Cu(2)O nanoparticles on the inner walls of the n-type TiO(2) NT arrays. The Cu(2)O/TiO(2) network shows much higher degradation rate (1.97 μg/min cm(2)) than the unmodified TiO(2) NTs (0.85 μg/min cm(2)). The enhanced photocatalytic acitivity can be attributed to the extended absorption in the visible resulting from the Cu(2)O nanowire networks and the effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the Cu(2)O/TiO(2) p-n junction interface.
                Bookmark

                Author and article information

                Journal
                Arabian Journal of Chemistry
                Arabian Journal of Chemistry
                Elsevier BV
                18785352
                May 2022
                May 2022
                : 15
                : 5
                : 103801
                Article
                10.1016/j.arabjc.2022.103801
                fea0e3ca-7a52-497d-acd5-562543be0a75
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article