61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inclusion Biogenesis and Reactivation of Persistent Chlamydia trachomatis Requires Host Cell Sphingolipid Biosynthesis

      research-article
      , , , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection.

          Author Summary

          The genus Chlamydia is composed of a group of obligate intracellular bacterial pathogens that cause several human diseases of medical significance. C. trachomatis is the most commonly encountered sexually transmitted pathogen, as well as the leading cause of preventable blindness worldwide. The prevalence of chlamydial infections, and the extraordinary morbidity and health care costs associated with chronic persisting disease, justifies the research efforts in this area of microbial pathogenesis. Despite their clinical importance, the mechanisms by which these intracellular bacteria obtain nutrients essential to their growth remain enigmatic. Acquisition of sphingolipids, from the cells that chlamydiae infect, is essential for bacterial propagation. This study identifies a requirement for the lipid sphingomyelin from the infected host cell for bacterial replication during infection, and for long-term subsistence in persistent chlamydial infection. Blockage of sphingomyelin acquisition results in premature release of bacteria, a reduced bacterial number, and failure of the bacteria to cause a persisting infection. In this study, we have identified and subsequently disrupted specific sphingomyelin transport pathways, providing important implications on therapeutic intervention targeting this successful microbial pathogen.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Brefeldin A: insights into the control of membrane traffic and organelle structure

          (1992)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interaction of chlamydiae and host cells in vitro.

            The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole.

              The acquisition of host-derived lipids is essential for the pathogenesis of the obligate intracellular bacteria Chlamydia trachomatis. Current models of chlamydial lipid acquisition center on the fusion of Golgi-derived exocytic vesicles and endosomal multivesicular bodies with the bacteria-containing parasitophorous vacuole ("inclusion"). In this study, we describe a mechanism of lipid acquisition and organelle subversion by C. trachomatis. We show by live cell fluorescence microscopy and electron microscopy that lipid droplets (LDs), neutral lipid storage organelles, are translocated from the host cytoplasm into the inclusion lumen. LDs dock at the surface of the inclusion, penetrate the inclusion membrane and intimately associate with reticulate Bodies, the replicative form of Chlamydia. The inclusion membrane protein IncA, but not other inclusion membrane proteins, cofractionated with LDs and accumulated in the inclusion lumen. Therefore, we postulate that the translocation of LDs may occur at IncA-enriched subdomains of the inclusion membrane. Finally, the chlamydial protein Lda3 may participate in the cooption of these organelles by linking cytoplasmic LDs to inclusion membranes and promoting the removal of the LD protective coat protein, adipocyte differentiation related protein (ADRP). The wholesale transport of LDs into the lumen of a parasitophorous vacuole represents a unique mechanism of organelle sequestration and subversion by a bacterial pathogen.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2009
                November 2009
                20 November 2009
                : 5
                : 11
                : e1000664
                Affiliations
                [1]Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                Yale University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: DKR RKR WLB. Performed the experiments: DKR LG RKR WLB. Analyzed the data: DKR LG RKR WLB. Wrote the paper: WLB.

                Article
                09-PLPA-RA-1243R2
                10.1371/journal.ppat.1000664
                2774160
                19936056
                fed3b18d-3c25-4d31-878d-9c71e5bf5df9
                Robertson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 July 2009
                : 26 October 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Infectious Diseases/Bacterial Infections
                Microbiology/Cellular Microbiology and Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article