7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing ReaxFF for molecular dynamics simulations of lithium-ion batteries: an interactive reparameterization protocol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lithium-ion batteries (LIBs) have become an essential technology for the green economy transition, as they are widely used in portable electronics, electric vehicles, and renewable energy systems. The solid-electrolyte interphase (SEI) is a key component for the correct operation, performance, and safety of LIBs. The SEI arises from the initial thermal metastability of the anode-electrolyte interface, and the resulting electrolyte reduction products stabilize the interface by forming an electrochemical buffer window. This article aims to make a first—but important—step towards enhancing the parametrization of a widely-used reactive force field (ReaxFF) for accurate molecular dynamics (MD) simulations of SEI components in LIBs. To this end, we focus on Lithium Fluoride (LiF), an inorganic salt of great interest due to its beneficial properties in the passivation layer. The protocol relies heavily on various Python libraries designed to work with atomistic simulations allowing robust automation of all the reparameterization steps. The proposed set of configurations, and the resulting dataset, allow the new ReaxFF to recover the solid nature of the inorganic salt and improve the mass transport properties prediction from MD simulation. The optimized ReaxFF surpasses the previously available force field by accurately adjusting the diffusivity of lithium in the solid lattice, resulting in a two-order-of-magnitude improvement in its prediction at room temperature. However, our comprehensive investigation of the simulation shows the strong sensitivity of the ReaxFF to the training set, making its ability to interpolate the potential energy surface challenging. Consequently, the current formulation of ReaxFF can be effectively employed to model specific and well-defined phenomena by utilizing the proposed interactive reparameterization protocol to construct the dataset. Overall, this work represents a significant initial step towards refining ReaxFF for precise reactive MD simulations, shedding light on the challenges and limitations of ReaxFF force field parametrization. The demonstrated limitations emphasize the potential for developing more versatile and advanced force fields to upscale ab initio simulation through our interactive reparameterization protocol, enabling more accurate and comprehensive MD simulations in the future.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            VMD: Visual molecular dynamics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Array programming with NumPy

              Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves 1 and in the first imaging of a black hole 2 . Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.
                Bookmark

                Author and article information

                Contributors
                paolo.deangelis@polito.it
                pietro.asinari@polito.it
                eliodoro.chiavazzo@polito.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 January 2024
                10 January 2024
                2024
                : 14
                : 978
                Affiliations
                [1 ]Department of Energy “Galileo Ferraris”, Politecnico di Torino, ( https://ror.org/00bgk9508) Corso Duca degli Abruzzi 24, 10129 Torino, Italy
                [2 ]Istituto Nazionale di Ricerca Metrologica, ( https://ror.org/03vn1bh77) Strada delle Cacce 91, 10135 Torino, Italy
                Article
                50978
                10.1038/s41598-023-50978-5
                10782028
                38200063
                fed643ab-4035-42c3-a37f-cbf209adc58f
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 October 2023
                : 28 December 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000780, European Commission;
                Award ID: 957189
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                batteries,computational science,molecular dynamics
                Uncategorized
                batteries, computational science, molecular dynamics

                Comments

                Comment on this article