47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic stability of Rift Valley fever virus MP-12 vaccine during serial passages in culture cells

      research-article
      1 , 1 , 2 , 3 ,
      NPJ Vaccines
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rift Valley fever is a mosquito-borne zoonotic disease endemic to Africa, which affects both ruminants and humans. Rift Valley fever causes serious damage to the livestock industry and is also a threat to public health. The Rift Valley fever virus has a segmented negative-stranded RNA genome consisting of Large (L)-segment, Medium (M)-segment, and Small (S)-segment. The live-attenuated MP-12 vaccine is immunogenic in livestock and humans, and is conditionally licensed for veterinary use in the US. The MP-12 strain encodes 23 mutations (nine amino acid substitutions) and is attenuated through a combination of mutations in the L-segment, M-segment, and S-segment. Among them, the M-U795C, M-A3564G, and L-G3104A mutations contribute to viral attenuation through the L-segment and M-segment. The M-U795C, M-A3564G, L-U533C, and L-G3750A mutations are also independently responsible for temperature-sensitive phenotype. We hypothesized that a serial passage of the MP-12 vaccine in culture cells causes reversions of the MP-12 genome. The MP-12 vaccine and recombinant rMP12-ΔNSs16/198 were serially passaged 25 times. Droplet digital polymerase chain reaction analysis revealed that the reversion occurred at L-G3750A during passages of MP-12 in Vero or MRC-5 cells. The reversion also occurred at M-A3564G and L-U533C of rMP12-ΔNSs16/198 in Vero cells. Reversion mutations were not found in MP-12 or the variant, rMP12-TOSNSs, in the brains of mice with encephalitis. This study characterized genetic stability of the MP-12 vaccine and the potential risk of reversion mutation at the L-G3750A temperature-sensitive mutation after excessive viral passages in culture cells.

          Rift Valley fever: Whole-virus vaccine alters the attenuation profile

          A vaccine candidate for Rift Valley fever virus can undergo mutations and partially revert to parental pathogenic strain. Rift Valley fever is a prolific infection that affects livestock and humans in Africa. Tetsuro Ikegami and Nandadeva Lokugamage, of the University of Texas Medical Branch, United States, tested the genetic stability of vaccine candidate MP-12, an attenuated form of the virus, through ‘serial passaging’—culturing the virus, establishing a new culture from a sample, then repeating the procedure to determine how the virus mutates in response to successive new environments. The duo found that after 25 ‘passages’, MP-12 reverted a part of attenuation mutations back to its original, pathogenic sequence. Though MP-12 redundantly encodes stable attenuation mutations, it will be important to use a seed lot system to avoid the attenuation profile changes.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics.

          This cohort descriptive study summarizes the epidemiological, clinical, and laboratory characteristics of the Rift Valley fever (RVF) epidemic that occurred in Saudi Arabia from 26 August 2000 through 22 September 2001. A total of 886 cases were reported. Of 834 reported cases for which laboratory results were available, 81.9% were laboratory confirmed, of which 51.1% were positive for only RVF immunoglobulin M, 35.7% were positive for only RVF antigen, and 13.2% were positive for both. The mean age (+/- standard deviation) was 46.9+/-19.4 years, and the ratio of male to female patients was 4:1. Clinical and laboratory features included fever (92.6% of patients), nausea (59.4%), vomiting (52.6%), abdominal pain (38.0%), diarrhea (22.1%), jaundice (18.1%), neurological manifestations (17.1%), hemorrhagic manifestations (7.1%), vision loss or scotomas (1.5%), elevated liver enzyme levels (98%), elevated lactate dehydrogenase level (60.2%), thrombocytopenia (38.4%), leukopenia (39.7%), renal impairment or failure (27.8%), elevated creatine kinase level (27.3%), and severe anemia (15.1%). The mortality rate was 13.9%. Bleeding, neurological manifestations, and jaundice were independently associated with a high mortality rate. Patients with leukopenia had significantly a lower mortality rate than did those with a normal or high leukocyte count (2.3% vs. 27.9%; odds ratio, 0.09; 95% confidence interval, 0.01-0.63).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs.

            Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR(-/-) mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor but remained attenuated in IFN-gamma receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-alpha/beta production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-alpha/beta and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-alpha/beta production, we infected susceptible IFNAR(-/-) mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-alpha/beta production. These results demonstrate that the ability of RVFV to inhibit IFN-alpha/beta production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription.

              Rift Valley fever virus (RVFV) is an important cause of epizootics and epidemics in Africa and a potential agent of bioterrorism. A better understanding of the factors that govern RVFV virulence and pathogenicity is required, given the urgent need for antiviral therapies and safe vaccines. We have previously shown that RVFV strains with mutations in the NSs gene are excellent inducers of alpha/beta interferon (IFN-alpha/beta) and are highly attenuated in mice. Here, we demonstrate that NSs is sufficient to block IFN-beta gene expression at the transcriptional level. In cells transiently expressing NSs, IFN-beta transcripts were not inducible by viral infection or by transfection of poly(I:C). NSs with anti-IFN activity accumulated in the nucleus. In contrast, mutant forms of NSs that had lost their IFN-inhibiting activity remained in the cytoplasm, indicating that nuclear localization plays a role. IFN synthesis is regulated by specific transcription factors, including interferon regulatory factor (IRF-3), NF-kappaB, and AP-1. In the presence of NSs, IRF-3 was still activated and moved to the nucleus. Likewise, NF-kappaB and AP-1 were activated normally, as shown in electrophoretic mobility shift assays. Moreover, NSs was found to inhibit transcriptional activity of a constitutive promoter, in agreement with recent findings showing that NSs targets the basal cellular transcription factor TFIIH. The present results suggest that NSs, unlike other viral IFN antagonists, does not inhibit IFN-specific transcription factors but blocks IFN gene expression at a subsequent step. Copyright 2004 American Society for Microbiology
                Bookmark

                Author and article information

                Contributors
                teikegam@utmb.edu
                Journal
                NPJ Vaccines
                NPJ Vaccines
                NPJ Vaccines
                Nature Publishing Group UK (London )
                2059-0105
                17 July 2017
                17 July 2017
                2017
                : 2
                : 20
                Affiliations
                [1 ]ISNI 0000 0001 1547 9964, GRID grid.176731.5, Department of Pathology, , The University of Texas Medical Branch at Galveston, ; 301 University Blvd., Galveston, TX 77555 USA
                [2 ]ISNI 0000 0001 1547 9964, GRID grid.176731.5, The Sealy Center for Vaccine Development, , The University of Texas Medical Branch at Galveston, ; 301 University Blvd., Galveston, TX 77555 USA
                [3 ]ISNI 0000 0001 1547 9964, GRID grid.176731.5, The Center for Biodefense and Emerging Infectious Diseases, , The University of Texas Medical Branch at Galveston, ; 301 University Blvd., Galveston, TX 77555 USA
                Author information
                http://orcid.org/0000-0001-8318-2783
                Article
                21
                10.1038/s41541-017-0021-9
                5627234
                29167748
                ffa227f4-3765-4007-9c34-67362bd31636
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 November 2016
                : 24 May 2017
                : 6 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article